
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Efficient algorithms for wave problems

Boris BONEV

Thèse n° 8641

2021

Présentée le 24 septembre 2021

Prof. F. Eisenbrand, président du jury
Prof. J. S. Hesthaven, directeur de thèse
Prof. P.-G. Martinsson, rapporteur
Prof. R. Abgrall, rapporteur
Prof. D. Kressner, rapporteur

Faculté des sciences de base
Chaire de mathématiques computationnelles et science de la simulation
Programme doctoral en mathématiques

Disclaimer
Doctoral thesis submitted the ��. of July ���� in partial fulfillment of the requirements for
the degree of Doctor of Philosophy at the Department of Mathematics at EPFL.

Copyright notice
cbnd Except otherwise noted, this work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs �.� Generic License.
To view a copy of the CC BY-NC-ND code, visit:
http://creativecommons.org/licenses/by-nc-nd/2.0/

Colophon
This document was typeset with the help of KOMA-Script and LATEX using the kaobook
class.

Publisher
Published by EPFL, August ����.

http://creativecommons.org/licenses/by-nc-nd/2.0/
https://sourceforge.net/projects/koma-script/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/

To my grandfather.

Acknowledgements

First and foremost, I would like to thank my thesis supervisor, Prof. Jan S. Hesthaven, for
this invaluable opportunity, his patience, and guidance throughout these years. Thanks
to him, I have learned how to approach problems, both in science and in life. He has
taught me to persevere and have confidence that there is light at the end of the tunnel.
He has taught me to pick my battles and focus on what matters. I am fortunate to be able
to say that I have learned from the best.

Much of this work would not have been possible without the work and help of Prof.
Frank Giraldo, Prof. Michal Kopera, Dr. Mahya Hajihassanpour, and Zilan Cheng. I am
very grateful for having had the opportunity of working and learning with them.

Special thanks are due to the jury members, Prof. Rémi Abgrall, Prof. Per-Gunnar
Martinsson, Prof. Daniel Kressner, and Prof Friedrich Eisenbrand, who have taken their
time to read and review this dissertation and serve as jury members. Their questions and
comments have helped me in improving upon the original manuscript.

I would also like to thank the anonymous reviewers of past publications for reading my
manuscripts and providing me with their helpful comments. It forced me to rethink ideas
and concepts and better understand my work.

I thank my colleagues, and in particular, I would like to thank Dr. Stefano Massei, Prof.
Daniel Kressner, and Dr. Fabian Mönkeberg, for always having an open door and the
patience to answer my questions.

I would like to acknowledge the Swiss National Science Foundation (SNSF) which has
supported this work under grant ������.

I am fortunate to have some amazing people in my life. In no particular order, I would
like to thank:

Martin and Mehdi for helping me proofread this thesis and giving me their suggestions
on how to improve it.

Clara for feeding me, listening to me talk about boring matrices and distracting me when
I needed it.

My friends Greg, Iordan, Mehdi, Rami, Martin, Martin, Fernando, Fabian, Ludger,
Youssef, Youssef, Léo, Emile, Paride, Léo, Hugo, Alessandro, Chiara, Ivan, Benoit, Elena,
Tomislav.

My family, for always being there when I needed them.

Abstract

Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and
gravitational waves among others. Their descriptions as partial differential equations in
electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineering.
Having numerical methods to solve these problems efficiently is therefore of great
importance and value to domains such as aerospace engineering, geophysics, and civil
engineering. Wave problems are characterized by the finite speeds at which waves
propagate and present a series of challenges for the numerical methods aimed at solving
them. This dissertation is concerned with the development and analysis of numerical
algorithms for solving wave problems efficiently using a computer. It contains two
parts:

The first part is concerned with sparse linear systems which stem from discretizations
of such problems. An approximate direct solver is developed, which can be computed
and applied in quasilinear complexity. As such, it can also be used as a preconditioner
to accelerate the computation of solutions using iterative methods. This direct solver is
based on structured Gaussian elimination, using a nested dissection reordering and the
compression of dense, intermediate matrices using rank structured matrix formats. We
motivate the use of these formats and demonstrate their usefulness in our algorithm. The
viability of the method is then verified using a variety of numerical experiments. These
confirm the quasilinear complexity and the applicability of the method.

The second part focuses on the solution of the shallow water equations using the
discontinuous Galerkin method. These equations are used to model tsunamis, storm
surges, and weather phenomena. We aim to model large-scale tsunami events, as would
be required for the development of an early-warning system. This necessitates the
development of a well-balanced numerical scheme, which is efficient, flexible, and robust.
We analyze the well-balanced property in the context of discontinuous Galerkin methods
and how it can be obtained. Another problem that arises with the shallow water equations
is the presence of dry areas. We introduce methods to handle these in a well-balanced,
and physically consistent manner. The resulting method is validated using tests in one
dimension, as well as simulations on the surface of the Earth. The latter are compared to
real-world data obtained from buoys and satellites, which demonstrate the applicability
and accuracy of our method.

Keywords: partial differential equations, sparse linear system, hierarchical matrices, low-
rank approximation, HSS matrices, nested dissection, structured elimination, Gaussian
elimination, multifrontal method, iterative solver, preconditioner, Poisson problem,
Helmholtz problem, elastic wave equation, shallow water equations, discontinuous
Galerkin method, wetting/drying, well-balanced schemes, tsunami simulation

Zusammenfassung

Wellenphänomene kommen in der Natur unter anderem als elektromagnetische Wel-
len, akustische Wellen und Gravitationswellen vor. Ihre Beschreibung als partielle
Differenzialgleichungen in den Bereichen des Elektromagnetismus, Akustik und der
Fluiddynamik sind daher allgegenwärtig in den Natur- und Ingenieurwissenschaften.
Numerische Methoden zur effizienten Lösung dieser Probleme sind daher unschätzbar
wertvoll für Domänen wie z.B. die Luft- und Raumfahrttechnik, die Geophysik und
das Bauingenieurwesen. Eine wichtige Eigenschaft dieser Wellenphänomene ist die
begrenzte Geschwindigkeit, mit der sich die Wellen ausbreiten. Wellenprobleme stellen
eine Reihe an Herausforderungen an die assoziierten numerischen Methoden. Diese
Dissertation beschäftigt sich mit der Entwicklung und Analyse numerischer Methoden
und Algorithmen zur effizienten Lösung von partiellen Differenzialgleichungen, die
Wellenphänomene beschreiben, mithilfe eines Computers. Sie besteht aus zwei Teilen:

Der erste Teil beschäftigt sich mit dünnbesetzten Gleichungssystemen, wie sie bei
der Diskretisierung von solchen Problemen vorkommen. Es wird ein approximativer
Löser vorgestellt, welcher in quasi-linearer Zeit berechnet und angewendet werden
kann. Der Löser kann daher auch, als Präkonditionierer angewandt werden, um die
Konvergenzraten iterativer Löser zu beschleunigen. Unser Löser basiert auf struktu-
rierten Gau�-Eliminationsverfahren anhand von verschachtelter Unterteilung und der
Kompression von dichtbesetzten Matrizen anhand von hierarchischen Matrizen. Wir
motivieren und zeigen die Nützlichkeit von hierarchischen Matrizen in der Entwicklung
effizienter Lösungsverfahren. Anschlie�end demonstrieren wir the Anwendbarkeit und
die Komplexität unseres Lösers mithilfe von numerischen Experimenten.

Im zweiten Teil stellen wir diskontinuierliche Galerkin Methoden zur Lösung der
Flachwassergleichungen vor. Diese Gleichungen werden zur Modellierung von Tsunamis,
Sturmfluten und anderer Wetterphänomene verwendet. Wir entwickeln ein Modell zur
Simulation von Tsunamiphänomenen, wie es für die Entwicklung eines Frühwarnsystems
notwendig ist. Dies benötigt die Entwicklung eines numerischen Verfahrens, welches
gewisse stationäre Gleichgewichte exakt erhält. Diese Eigenschaft die wichtig ist, um
die Plausibilität der Lösungen zu gewährleisten. Wir analysieren diskontinuierliche
Galerkin Verfahren unter diesem Aspekt und entwickeln darüber hinaus Methoden zur
Behandlung der Phasengrenzen. Im Anschluss verifizieren wir unsere Methoden anhand
von Beispielen in einer Dimension und Simulationen auf der Oberfläche der Erde, welche
wir mit Satellitendaten und Bojendaten vergleichen.

Schlüsselwörter: partielle Differentialgleichungen, dünnbesetzte Gleichungssysteme,
hierarchische Matrizen, niedrig-Rang Approximation, hierarchisch semi-separable Ma-
trizen, verschachtelte Unterteilung, strukturierte Gau�-Elimination, Iterative Löser,
Präkonditionierer, Poisson-Gleichung, Helmholtz-Gleichung, elastische Wellengleichung,
Flachwassergleichung, diskontinuierliche Galerkin Verfahren, Phasengrenzen, wohl-
balancierte Methoden, Tsunami Simulation

Résumé

La physique des ondes apparaît dans la Nature entre autres sous forme d’ondes électro-
magnétiques, d’ondes sonores ou encore d’ondes gravitationnelles. Les équations aux
dérivées partielles correspondantes à ces phénomènes sont omniprésentes en sciences
et dans leurs applications industrielles. Pour cette raison, il est très utile d’avoir des
méthodes numériques permettant résoudre ces problèmes efficacement pour des applica-
tions allant de l’ingénierie aérospatiale, à la géophysique en passant par l’ingénierie civile.
Une des caractéristiques de ces problèmes est la nature finie de la vitesse de propagation
des ondes. Les méthodes numériques dédiées à leur résolution sont aussi confrontés
à une multitude de difficultés. Cette thèse a pour but le développement et l’analyse
d’algorithmes numériques permettant de résoudre efficacement certains problèmes de
propagation d’ondes au moyen d’ordinateurs. Elle se compose de deux parties :

La première partie considère les systèmes linéaires creux qui sont obtenus suite à la
discrétisation de certains problèmes mentionnés ci-dessus. Une méthode consistant à
résoudre une approximation du système linéaire avec un solveur direct est développée.
Elle possède une complexité quasi-linéaire. En tant que telle, elle peut aussi servir de
préconditionneur pour réduire le temps de calcul de méthodes itératives. Le solveur
direct approché repose sur une méthode structurée du Pivot de Gauss, en utilisant une
méthode de dissection emboîtée qui réordonne et compresse des matrices intermédiaires
denses selon une structure dépendante de leur rang. Nous justifions l’utilisation de ces
structures particulières. Nous montrons leur utilité dans notre algorithme. La réussite
de la méthode est ensuite vérifiée au travers de plusieurs expériences numériques. Elles
confirment la complexité quasi-linéaire et l’efficacité de la méthode.

La seconde partie étudie les solutions des équations de Barré de Saint-Venant ou équations
des écoulements en eau peu profonde en utilisant une méthode de Galerkin discontinue.
Ces équations sont utilisées pour modéliser les tsunamis, les ondes de tempêtes et des
phénomènes météorologiques similaires. Nous avons pour but de modéliser l’apparition
de tsunamis à large échelle, ce qui est nécessaire pour le développement dun système
dalarme prévisionnel. Pour cela, il est nécessaire de développer une méthode numérique
flexible, efficace, robuste qui, en particulier, préserve la stabilité lorsque le système est
dans un état stationnaire (schéma équilibré). Nous analysons cette propriété de stabilité
spécifiquement dans le contexte de méthodes de Galerkin discontinues et nous montrons
comment celle-ci peut être obtenue systématiquement. Un autre problème découlant
des équations en eau peu profonde est la présence de régions sèches. Nous introduisons
des méthodes pour traiter ces régions de manière conservative et cohérente du point
de vue physique. Le modèle est validé en une dimension, puis avec des simulations
sur la surface terrestre. Ces dernières sont comparées avec des données expérimentales
obtenues par des bouées et des satellites. Ces résultats montrent l’efficacité et la précision
de cette méthode.

Mots-clés : équations au dérivées partielles, système linéaire creux, matrices hiérar-
chiques, approximation de bas rang, matrices hiérarchiques semi-séparables, dissection
emboîtée, élimination structurée, pivot de Gauss, méthode multifrontale, solveur itéra-
tif, préconditionneur, problème de Poisson, équation de Helmholtz, équation d’onde
élastique, équations de Barré de Saint-Venant, méthode de Galerkin discontinue, mouilla-
ge/séchage, schéma de conservation, simulation de tsunami.

Preface

Numerical analysis is the study of algorithms
for the problems of continuous mathematics

- Lloyd N. Trefethen [�]

This thesis contains two parts - one on hierarchical preconditioners for large linear
systems and one on discontinuous Galerkin methods for the shallow water equations.
They are connected - the continuous problems that we design algorithms for are wave
problems. Apart from that, I have decided to keep them as separate as possible, such
that both parts can stand on their own. This is intended to aid the reader who is more
interested in one topic over the other.

The first part focuses on efficient preconditioners, as well as sparse direct solvers for wave
problems and elliptic problems in particular. It introduces some fundamental concepts
on finite element approximation, low-rank approximation, sparse direct solvers, iterative
solvers and hierarchical matrices, before explaining our work on hierarchical solvers
and preconditioners for elliptic problems. The second part on the other hand, focuses on
the shallow water equations and the discontinuous Galerkin method. We discuss some
important notions on well-balanced methods and wetting-drying, before we move on to
design a method intended for large-scale ocean, tsunami, and storm surge modeling.

The work as presented here has either been published or submitted for publication in the
following articles:

[�] Boris Bonev, Jan S. Hesthaven, Francis X. Giraldo, and Michal A. Kopera. ‘Discontin-
uous Galerkin scheme for the spherical shallow water equations with applications
to tsunami modeling and prediction’. In: Journal of Computational Physics (����)

[�] Mahya Hajihassanpour, Boris Bonev, and Jan S. Hesthaven. ‘A comparative study
of earthquake source models in high-order accurate tsunami simulations’. In: Ocean
Modelling ���.August (Sept. ����)

[�] Boris Bonev and Jan S. Hesthaven. ‘A hierarchical preconditioner for wave problems
in quasilinear complexity’. In: ������ (May ����). arXiv: 2105.07791

To skip directly to our contributions on preconditioning for wave problems, I suggest
reading Chapter � and Chapter �. For our contributions to numerical schemes for the
schallow water equations, I suggest reading Chapter ��, Chapter �� and Chapter ��.

Research should be reproducible wherever possible. Moreover, the best way of under-
standing algorithms is often to implement and play with them. Most of the codes related
to this thesis have been made available at github.com/bonevbs. I have made an effort to
reference relevant sections to the codes wherever possible. The reader is encouraged to
use the hyperlinks provided on the side to check them out.

Boris Bonev

https://arxiv.org/abs/2105.07791
https://github.com/bonevbs

Contents

Preface ix

Contents x

H����������� ��������������� �

� Motivation �
�.� Some related problems . �
�.� Finite element approximation . �
�.� Green’s function . �

� Low-rank approximation �
�.� Linear algebra basics . �
�.� Sparse matrices . ��
�.� Low-rank matrices . ��
�.� Rank-revealing QR . ��
�.� Random sampling . ��

� Sparse direct solvers ��
�.� Graph elimination . ��
�.� LDR Factorization . ��
�.� Fill-in and reorderings . ��
�.� Structured elimination . ��

� Iterative solvers ��
�.� Krylov spaces . ��
�.� The Arnoldi iteration . ��
�.� GMRES . ��
�.� Convergence of GMRES . ��
�.� Preconditioning . ��

� Hierarchical matrices ��
�.� Approximate separability . ��
�.� Block cluster trees . ��
�.� Hierarchical matrices . ��
�.� Nested bases . ��

� Algorithms for hierarchical matrices ��
�.� HODLR arithmetic . ��
�.� HSS arithmetic . ��
�.� HSS compression . ��
�.� HssMatrices.jl . ��

� Hierarchical approximate solvers ��
�.� Compressing the fill-in . ��
�.� Existing methods . ��
�.� Approximate factorization . ��

�.� Complexity of the algorithm . ��

� Numerical Experiments ��
�.� Parameters . ��
�.� Poisson problem . ��
�.� Helmholtz problem . ��
�.� Scaling and performance . ��
�.� Codes for reproducibility . ��
�.� Concluding remarks . ��

D������������ G������� ������� ��� ���
S������ W���� E�������� ��

� Motivation ��
�.� The shallow water equations . ��
�.� A simple scheme . ���

�� The discontinuous Galerkin method ���
��.� In one dimension . ���
��.� On the Sphere . ���
��.� A few words on meshes . ���
��.� Time integration . ���

�� Well-balanced schemes ���
��.� The well-balanced property . ���
��.� Hydrostatic reconstruction . ���
��.� Well-balanced DG schemes . ���
��.� Non-conforming meshes . ���

�� Wet/dry transitions ���
��.� A survey of existing methods . ���
��.� Maintaining positivity . ���
��.� Flux discretization . ���
��.� A few notes on stability . ���

�� Numerical Results ���
��.� Results in one dimension . ���
��.� Results on the sphere . ���
��.� Dynamic source models . ���
��.� Concluding remarks . ���

Bibliography ���

List of Figures

�.� Numerical solutions of the Helmholtz problem using finite elements �
�.� Triangular mesh on a guitar shaped domain. �
�.� Sparsity pattern of a Helmholtz problem . �

�.� Illustration of the compressed sparse column format. ��
�.� Low-rank approximation of the EPFL logo. ��
�.� Comparison of rank estimators. ��

�.� Sparsity pattern and corresponding adjacency graph. ��
�.� Equivalence of sparse Gaussian elimination and graph elimination. ��
�.� Elimination and fill-in in the arrowhead matrix. ��
�.� Sparsity pattern of the L factor for the Helmholtz problem ��
�.� Sparsity pattern of the Galerkin matrix reordered using Reverse Cuthill-McKee. ��
�.� Nested dissection of a finite element mesh. ��
�.� Nested dissection and its associated elimination tree. ��
�.� Sparsity pattern of the Galerkin matrix after nested dissection reordering. . ��
�.� Elimination of a single supernode. ��

�.� Influence of the spectrum on the convergence rate of GMRES. ��
�.� Convergence and spectrum of the preconditioned Helmholtz equation. . . . ��

�.� Illustration of the admissibility condition. ��
�.� Example of a cluster tree . ��
�.� Example of a cluster tree . ��
�.� Block partitioning for an admissibility condition in one dimension. ��
�.� HODLR block partitioning. ��
�.� Illustration of a HSS block row and a block column. ��

�.� Illustration of the ULV factorization algorithm for HSS matrices. ��
�.� Illustration of numbering in the HSS hierarchy. ��
�.� Visualization of HSS rank structure using HssMatrices.jl. ��
�.� Timings and memory requirements of various HSS algorithms in HssMatrices.jl. ��

�.� Compressibility of the stiffness matrix. ��
�.� Rank structure of the top-level Schur complement in �D. ��
�.� H-matrix rank structure of the top-level Schur complement in �D. ��
�.� HSS rank structure of the top-level Schur complement in �D. ��
�.� Illustration of well-separated nodes. ��
�.� HSS block structure of the Schur complement. ��
�.� Illustration of the connectivity between µ and ⌫ for finite element discretiza-

tions. ��
�.� Elimination tree with switching level. ��

�.� Relative residual for each iteration of the preconditioned GMRES applied to
the Poisson problem. ��

�.� Preconditioner peformance under h-refinement for the Poisson problem. . . ��
�.� Preconditioner peformance under p-refinement for the Poisson problem. . . ��

�.� Influence of the preconditioner hierarchy on GMRES convergence for a
compression tolerance of 10�6. ��

�.� Influence of the preconditioner hierarchy on GMRES convergence for a
compression tolerance of 10�4. ��

�.� Preconditioner performance for the Helmholtz problem at various wave
numbers. ��

�.� Preconditioner performance for the Helmholtz problem under h-refinement. ��
�.� Top-level Schur complements for the Helmholtz problem. ��
�.� Preconditioner performance for the Helmholtz problem under p-refinement. ��
�.�� Solution of the Helmholtz problem on a guitar shaped domain. ��
�.�� Relative residual for various wave numbers on the guitar shaped domain

with a compression tolerance of 10�6. ��
�.�� Relative residual for various wave numbers on the guitar shaped domain

with a compression tolerance of 10�5. ��
�.�� Randomly generated heterogeneous zones. ��
�.�� Solution of the Helmholtz problem with heterogeneous material coefficients. ��
�.�� Preconditioner performance for the elastic wave problem under h-refinement. ��
�.�� Preconditioner performance for the elastic wave problem under p-refinement. ��
�.�� Material distributions in the Marmousi II test case. ��
�.�� Solution of the frequency-domain elastic wave equations for the Marmousi

II test case. ��
�.�� Preconditioner performance for the Marmousi II test case. ��
�.�� Timings and memory requirements under h-refinement. ��
�.�� Timings and memory requirements for the Helmholtz problem under h-

refinement. ��
�.� Hokusai’s Great Wave off Kamigawa. ��

�.� Illustration of the assumptions for the shallow water equations in one
dimension. ���

��.� Comparison of the finite volume scheme to the discontinuous Galerkin
scheme for a smooth solution. ���

��.� Transformation into the reference element. ���
��.� Generation of icosahedral meshes on the sphere. ���
��.� Illustration of an adaptively refined non-conforming mesh. ���
��.� Illustration of a mesh hierarchy as a forest. ���
��.� Treatment of the hanging node in non-conforming discretizations. ���
��.� Linear stability regions of the explicit Euler and SSPRK(�,�) methods ���

��.� The challenge of preserving the lake at rest solution in partly dry elements. ���

��.� Convergence behavior of our wetting/drying scheme for a standing wave. . ���
��.� Comparison of regular DG method and our method on the lake at rest

solution on a sloping beach. ���
��.� Comparison of conservation errors for the lake at rest solution. ���
��.� Dam break on a dry bed at different times. ���
��.� Convergence behavior for the dam break solution on a dry bed. ���
��.� Oscillating lake in a parabolic bed. ���
��.� Convergence behavior for the oscillating lake in a parabolic channel. ���
��.� Depiction of an adaptive tsunami simulation on the sphere. ���
��.� Locally refined mesh for the simulation of the Tohoku tsunami. ���
��.�� High-fidelity simulation of the Tohoku tsunami. ���

��.�� Comparison of simulation data to real-world buoy data, recorded during
the Tohoku tsunami. ���

��.�� Comparison of static and dynamic source models using wave signals from
DART buoy ����� for the Tohoku tsunami. ���

��.�� Discontinuous Galerkin simulation of the Sumatra-Andaman tsunami. . . . ���
��.�� Subfault locations and satellite data for the Sumatra-Andaman tsunami. . . ���
��.�� Comparison of the simulation results ro satellite measurement and results

obtained by others. ���
��.�� Comparison of static and dynamic source models to the signals extracted

from satellite data during the Sumatra tsunami event. ���

List of Tables

�.� Green’s functions of various elliptic operators �

�.� Complexity of matrix factorizations using dense matrices ��
�.� Computational complexity of common operations using low-rank matrices. ��

�.� Computational complexity of arithmetic using HODLR matrices. ��
�.� Computational complexity of arithmetic using HSS matrices. ��

�.� Computational cost of operations arising in the factorization and application
of the preconditioner. ��

�.� Comparison of both dissection methods for the heterogeneous Helmholtz
problem. ��

�.� Factorization and application times for the Poisson problem under h-
refinement. ��

�.� Factorization and application times for the Helmholtz problem under h-
refinement. ��

�.� Factorization and application times with a direct solver for the Helmholtz
problem under h-refinement. ��

�.� Factorization and application times for the Helmholtz problem under h-
refinement with h ⇤ 1/4. ��

�.� Factorization and application times for the Helmholtz problem under h-
refinement with h ⇤ 1/2. ��

�.� Factorization and application times for the three-dimensional Poisson prob-
lem under h-refinement. ��

��.� Butcher Tableaus for a general, explicit Runge-Kutta scheme. ���
��.� Butcher Tableau for the strong-stability preserving Runge-Kutta �,� scheme. ���

��.� Relative errors for the lake at rest solution on the sphere. ���
��.� Comparison of forecasted and recorded tsunami arrival times. ���
��.� Subfault parameters for the SumatraAndaman tsunami. ���

H����������� ���������������

Motivation �
�.� Some related problems �
�.� Finite element approximation �
�.� Green’s function �

The continuous problems of physics that we are concerned with are
wave problems, which are modelled within the more general field of
partial differential equations (PDEs). Wave problems play an important
role in physics and engineering and present a wealth of interesting
phenomena such as scattering, dispersion and shock waves. The most
basic mathematical description of wave phenomena is the (linear) wave
equation

utt � c2r2u ⇤ f , (�.�)

subject to suitable initial and boundary conditions. Here, u : ⌦⇥[0,1)!
R is the solution, defined for a coordinate x in the d-dimensional spatial
domain⌦ ✓ Rd and a time t in the domain [0,1). utt denotes the second
partial derivative with respect to time @2u/@t2 and the Laplacian r2 is
taken with respect to the spatial coordinates x. The constant c denotes
the wave propagation speed and f is a function that acts as forcing term
for the equation. In one dimension, for instance, the wave equation (�.�)
describes the motion of a vibrating guitar string. In two dimensions, it
describes the movement of fluid surfaces, e.g. water waves.

�.� Some related problems

A classical approach to solve the wave equation is to exploit its linearity
and use the Fourier transform

u(t) ⇤ 1
2⇡

π 1

�1
ũ(!) exp(i!t)d!, (�.�)

which yields the frequency-domain version of (�.�)

�!2ũ2 � c2r2ũ ⇤ f̃ .

Here, ! is the angular frequency, and ũ , f̃ denote the Fourier transforms
(in time, x is kept constant) of u , f . We drop the tilde ~and introduce the
wavenumber ⇤ !/c for simplicity. This yields our first elliptic PDE,
the Helmholtz problem:

Problem �.�.� (Helmholtz problem) Let⌦ ⇢ Rd be an open, bounded
Lipschitz domain and �D , �N ✓ @⌦ such that �D [�N ⇤ @⌦ and
�D \ �N ⇤ ;. Find u : ⌦ ⇥ [0,1)! R, such that

�r2u � 2u ⇤ f in⌦, (�.�a)
u ⇤ gD on �D , (�.�b)

ru · n̂ ⇤ gN on �N , (�.�c)

subject to suitable boundary data gD : �D ! R and gN : �N ! R.

By setting ⇤ 0, we recover the related Poisson problem:

� Motivation �

�1
0

1

�1

0
1

0

2

(a) ⇤ 8

�1
0

1

�1

0
1

�2

0

·10�2

(b) ⇤ 16

Figure �.�: Numerical solutions to the
Helmholtz equation on⌦ ⇤ [�1, 1]2 with
f ⇤ 1. We chose a finite element discretiza-
tion with p ⇤ 1 and h ⇤ 1/80.

�: Pressure waves are characterized by
the displacement being aligned with the
direction of wave propagation. The dis-
placement in shear waves is perpendicular
to the propagation of the wave.

Problem �.�.� (Poisson problem) Let⌦, �D , �N be as in Problem �.�.�.
Then, find u : ⌦ ⇥ [0,1)! R, such that

�r2u ⇤ f in⌦, (�.�a)
u ⇤ gD on �D , (�.�b)

n̂ · ru ⇤ gN on �N , (�.�c)

subject to suitable boundary data gD , gN on �D , �N .

Both problems are related in the sense that the homogeneous Helmholtz
problem �.�.� is the eigenvalue problem of the Poisson problem, where 2

corresponds to the eigenvalue of the Laplacian. Therefore, if a wavenum-
ber coincides with the square-root of an eigenvalue of the Laplacian,
the Helmholtz problem �.�.� becomes singular. Figure �.� depicts some
numerically computed solutions to the two-dimensional Helmholtz prob-
lem on the square domain ⌦ ⇤ [�1, 1]2 with f ⇤ 1 and homogeneous
boundary conditions.

We observe that with increasing wavenumber, the solutions become
more and more oscillatory. It is often useful to refer to the wavelength of
the problem, which is � ⇤ 2⇡/.

Another way to understand the Poisson problem �.�.� is as the steady-
state solution to the wave problem (�.�). Therefore, it can describe e.g.
the constant displacement of a string under tension. This bring us to the
elastic wave equations in an inhomogeneous but isotropic medium

utt � r · �(u) ⇤ f , (�.�)

to which suitable boundary conditions must be specified. Now, u , f :
⌦⇥[0,1)! Rd are vector-valued functions and the symbol �(·)denotes
the d-by-d Cauchy stress tensor given by

�(u) ⇤ �(r · u)I + µ(ru + (ru)|), (�.�)

where �, µ : ⌦ ! R are the Lamé parameters of the material and I

denotes the d-by-d identity matrix. These equations can be understood as
one possible generalization of the wave equation (�.�). The characteristic
property of the elastic wave equation is that it permits both pressure and
shear waves and are therefore able to describe waves in both solids and
fluids. �

As for the wave equation (�.�), we recover the associated elliptic problem
by considering the steady-state problem.

Problem �.�.� (Steady-state elastic waves) Let ⌦, �D , �N be as in
Problem �.�.�. Then, find u : ⌦ ⇥ [0,1)! R, such that

�r · �(u) ⇤ f in⌦, (�.�a)
u ⇤ gD on �D , (�.�b)

�(u) · n̂ ⇤ gN on �N , (�.�c)

subject to suitable boundary data gD , gN on �D , �N .

� Motivation �

�: Discussion on the correct choice of
function spaces V and the existence and
uniqueness of solutions therein can be
found in [�].
�: Under certain assumptions, one can
show that this formulation is equivalent
to the differential formulation. This again
depends mainly on the choice of solution
space V . For details see [�–�].

Or, once again, we can use the Fourier transform (�.�) and recover the
frequency-domain elastic wave equation.

Problem �.�.� (Frequency-domain elastic waves) Let⌦, �D , �N be as
in Problem �.�.�. Then, find u : ⌦ ⇥ [0,1)! R, such that

�r · �(u) � ⇢ !2
u ⇤ f in⌦, (�.�a)
u ⇤ gD on �D , (�.�b)

�(u) · n̂ ⇤ gN on �N , (�.�c)

subject to suitable boundary data gD , gN on �D , �N .

These equations have their applications in fields ranging from geophysics
to civil engineering. They are frequently used to model seismic waves
and are the basis for seismic imaging techniques such as full waveform
inversion [�].

�.� Finite element approximation

One of the most ubiquitous methods in science and engineering for the
solution of partial differential equations is the finite element method
(FEM) [�].

We are concerned with finding the numerical solution of second-order
elliptic problems of the form

Lu ⇤ f in⌦, (�.�a)
u ⇤ gD on �D , (�.�b)

ru · n̂ ⇤ gN on �N , (�.�c)

on open, bounded Lipschitz domains⌦ ⇢ Rd subject to suitable bound-
ary data gD and gn on the Dirichlet and Neumann boundaries �D , �N ,
respectively, with �D [�N ⇤ @⌦ and �D \ �N ⇤ ;. The unit outward
normal vector on the boundary @⌦ is denoted by n̂. We are particularly
interested in second-order elliptic operators of the form

Lu ⇤ �r · (Aru + bu) + c · ru + du , (�.��)

where A, b , c , d are coefficients with suitable dimensions and variable in
space.

To formulate a finite element method, we consider a variational version
of the problem in some Hilbert space V . � � Then, the variational
formulation is: Find u 2 V , such that

8v 2 V : a(u , v) ⇤ l(v), (�.��)

where
a(u , v) ⇤ hv ,Lui ⇤

π
⌦

vLu dx (�.��)

is a bilinear form on V ⇥ V and

l(v) ⇤ hv , f i ⇤
π
⌦

v f dx (�.��)

� Motivation �

Figure �.�: Triangular mesh on a guitar
shaped domain.

�: If the basis is instead constructed glob-
ally, the methods are typically called spec-
tral element methods (SEM). Another im-
portant family of methods are boundary
element methods (BEM), which instead
formulate the problem on the boundary,
so that instead of the domain⌦, the bound-
ary of the domain @⌦ is discretized.

a linear form on V . An important requirement here is that the solution
space V must satisfy the boundary conditions or the problem may not
be well-defined (or equivalent to (�.�)). Let us restrict ourselves to the
Helmholtz problem (�.�) with homogeneous boundary Dirichlet data
gD ⇤ 0 everywhere (�D ⇤ @⌦). For this special case, the bilinear form
(�.��) is

a(u , v) ⇤
π
⌦
rv · ru � 2v · u dx. (�.��)

To discretize the problem, we choose a finite sub-vector space Vh ⇢ V
which is a good approximation of V . Here, it is common to use the
subscript letter “h” to denote the approximating space. h usually refers
to the smallest lengthscale, that is resolved by Vh . What does it mean
to have a “good” approximating space? It usually means that we can
control the approximation error kv � vh kV , by choosing an appropriate
h:

inf
vh2Vh

kv � vh kV ! 0 for h ! 0. (�.��)

We then proceed to approximate the variational problem (�.��) to

Problem �.�.� (Galerkin formulation) Find uh 2 Vh , such that

8vh 2 Vh : a(uh , vh) ⇤ l(vh). (�.��)

This is recognized as the Galerkin projection, requiring that the residual
u � uh is orthogonal to Vh , i.e.

a(u � uh , vh) ⇤ a(u , vh) � a(uh , vh) ⇤ l(vh) � l(vh) ⇤ 0.

In other words, the error is minimized within Vh and therefore, getting a
good approximation is fundamentally determined by the choice of Vh .

A common strategy for constructing Vh is to discretize the computational
domain by forming a mesh and then constructing a basis for Vh on that
mesh. In that setting, h typically denotes the maximum diameter of an
element in the mesh. Figure �.� depicts such a triangularization of a
guitar shaped domain.

To construct a basis for Vh ⇤ span{'1 , '2 , . . . , 'n}, basis functions are
typically constructed on a element-to-element basis. � We skip the details
of this step and instead note that there are two major approaches here.
The first one is to construct basis functions locally which result in a
discontinuous approximation space. These methods are therefore called
discontinuous Galerkin (DG) methods. The alternative, and the classical
approach for elliptic problems, is to enforce continuity up to a certain
degree at the element interfaces. Therefore, such methods are called
continuous Galerkin (CG) methods.

Thus, we assume that a basis {'1 , '2 , . . . , 'n} of polynomial order p
has been constructed. We can then assume that the solution uh can be
represented in this basis, i.e.

uh ⇤

nX
j⇤1

uj' j . (�.��)

� Motivation �

0 1,000 2,000

0

1,000

2,000

nnz ⇤ 25760

Figure �.�: Sparsity pattern of a fi-
nite element discretization (discontinuous
Galerkin) of the Helmholtz problem on the
square domain ⌦ ⇤ [�1, 1]2 with p ⇤ 1
and h ⇤ 1/20. This results in a matrix of
order 2401 with 25760 non-zero entries.

�: For a definition of the bandwidth of a
matrix see Definition �.�.�.

Here, we use u ⇤ [u1 , u2 , . . . , un]| to denote the coefficients of uh in
the basis of {' j}n

j . Inserting this and the basis for Vh into the Galerkin
formulation (�.��) then yields

8i 2 1, 2 . . . , n :
nX

j⇤1
uj a(' j , 'i) ⇤ l('i). (�.��)

For the Helmholtz problem with constant wavenumber and homoge-
neous Dirichlet boundaries this yields the linear system

Su � 2
Mu ⇤ M f , (�.��)

with the mass matrix
Mi j ⇤

π
⌦h

'i' j dx (�.��)

and the stiffness matrix

Si j ⇤

π
⌦h

r'ir' j dx. (�.��)

The right-hand side vector f contains the coefficients for a representation
of f in Vh . Thus, the finite element approximation is a systematic approach
to convert continuously formulated problems into discrete systems of
linear equations of the form

Ax ⇤ b , (�.��)

which makes them computationally tractable. For our example we have
A ⇤ S � 2

M , a matrix of order n, x ⇤ u is the vector of unknowns and
b ⇤ M f is the right-hand side.

The Galerkin matrix A represents a discrete representative of our original,
continuous operator L. Because the chosen basis functions are compactly
supported, we can expect the matrix A to be sparse, however, its band-
width is of order n1�1/d . Figure �.� depicts the sparsity pattern of such a
matrix. � Many relevant engineering and scientific computing problems
are solved using finite element approximation, and therefore result in a
sparse linear system of the form (�.��). These problems are often large,
which requires efficient algorithms to solve them. It is therefore crucial
to design efficient algorithms, which can tackle the challenges posed by
these problems.

�.� Green’s function

An alternative way of solving (�.�) is through the method of fundamental
solutions. Loosely speaking, we say that the problem has a fundamental
solution if there exists a map G, which maps any suitable right-hand side
to the solution u:

u(x) ⇤ G f ⇤

π
⌦

g(x , y) f (y)dy. (�.��)

Then, the kernel function g(x , y) is called the Green’s function of the
associated problem. What does the Green’s function look like? Inserting

� Motivation �

�: The Dirac delta is defined as the func-
tion (in the distributional sense), that sat-
isfies

�(') ⇤
π
⌦
�(y)'(y)dy ⇤ '(0),

for any test function ' 2 C10 (⌦).

Table �.�: Overview of some Green’s func-
tions g(x , y) ⇤ G(x� y) of various elliptic
operators in various domains. Vanishing
boundary conditions were used for the
Laplace equations and radiating bound-
ary conditions for the Helmholtz problems
[��].

operator L G(r)
�r2 in R2 1

2⇡ ln kr k
�r2 in R3 1

4⇡kr k
�r2 � 2 in R2 i

4 H(1)
0 (kr k) �

�r2 � 2 in R3 exp(ikr k)
4⇡kr k

�: H(1)
⌫ denotes the Hankel function of the

first kind.

(�.��) into the problem (�.�) yields

LG f ⇤ L
π
⌦

g(x , y) f (y)dy

⇤

π
⌦
Lg(x , y) f (y)dy

!
⇤ f (x).

This property is satisfied by the Dirac delta �(x) � and we therefore
require

Lg(x , y) ⇤ �(x � y). (�.��)

A more detailed and rigorous introduction to fundamental solutions
and Green’s functions can be found in [�, �, ��]. It is important to note
that, much like any other solution of the PDE, the Green’s function will
depend on the boundary conditions that are chosen. This renders the
method of fundamental solutions impractical for applications involving
complex geometries and boundary conditions.

However, it is intuitive that the operator G must share some properties
with the inverse of the Galerkin matrix A

�1. This is one of the central
ideas of the methods presented in Chapter �, and it is therefore useful
to consider the properties of the Green’s function, if it is known for
the problem at hand. Table �.� provides an overview over some of the
Green’s functions that are relevant for our applications.

Low-rank approximation �
�.� Linear algebra basics �

Rank and nullity �
Important properties �
Singular value decomposition��
Other matrix factorizations . ��

�.� Sparse matrices ��
�.� Low-rank matrices ��
�.� Rank-revealing QR ��
�.� Random sampling ��

Range approximation ��
Rank estimation via sampling ��
Randomized ID ��

A big portion of this work relies on low-rank approximation. To set the
stage, we give a brief overview of linear algebra preliminaries. Most
of the theory that is covered is a rough sketch and there are numerous
excellent works on each of the subjects. These are referenced on the side.
Section �.� is concerned with the basic notions of linear algebra, leading
up to the subject of low-rank approximation, discussed in Section �.�.

�.� Linear algebra basics

Let us introduce our notation. Scalars are typeset in lowercase italic
Roman or Greek letters (a , x , �, ...). Vectors and matrices are denoted
with bold letters, where lowercase bold italic Roman and Greek letters
(u , v ,!...) indicate vectors and uppercase bold Roman or Greek letters
(A, B,⌦...) stand for matrices. The bold letter 0 will denote matrices
and vectors of all zeroes, whose dimensions, unless otherwise specified,
will be evident from the context. We will use 1 to denote the vector
of all ones and the bold letter I to denote the identity matrix, whose
dimensions again will be evident from the context in which they appear.
The transpose of a matrix is denoted by the superscript |, and similarly,
the conjugate transpose by the superscript ⇤. The j-th basis vector of the
Euclidian space is denoted as e j , i.e. e1 ⇤ [1, 0, 0, . . .]|, e2 ⇤ [0, 1, 0, . . .]|,
etc. Finally, we will often use both notations A(I , J) and AI J to denote
submatrices corresponding to the index sets I and J. Sometimes it will be
convenient to apply the M�����-style notation A(:, j), to denote entire
columns of A. For the sake of convenience, we may specify the index
sets I in standard mathematical notation, i.e. I ⇤ {i1 , i2 , . . .}, but actually
mean an index vector [i1 , i2 , . . .]|, so that the indices appear in the
intended order.

Rank and nullity

We begin with some basic definitions related to matrices. Matrices
generalize linear maps T : V ! W over finite vector spaces V,W . As
such, it is convenient to introduce the notion of

Definition �.�.� (Rank and Nullity) Let V,W be finite dimensional vector
spaces and let T : V !W be a linear transform. We define

rank T ⇤ dim range T (�.�)

and
nullity T ⇤ dim null T (�.�)

With these notions in place, we proceed to the fundamental rank-nullity
theorem:

� Low-rank approximation �

Theorem �.�.� (Rank-nullity theorem) Let V,W be finite vector spaces
and let T : V !W be a linear transform. Then

rank T + nullity T ⇤ dim V. (�.�)

This is useful as it offers insight into how we might decompose the linear
transform T. Imagine for instance a matrix A and the linear transform
induced by A, which maps v 2 V to Av 2 W . Theorem �.�.� tells us that
we can identify linear subspaces of V containing all vectors that do not
get mapped to 0 by A. This becomes important in the context of low-rank
approximation and Theorem �.�.�.

Important properties of matrices

We introduce some important definitions related to matrices. The goal
here is to give an overview and to fix notation. For more details, as well
as proofs for the theorems we refer the reader to [�, ��–��].

Definition �.�.� (Spectral norm) Let A 2 Cm⇥n . We define the spectral
norm

kAk2 ⇤ max
x2Cn

kAxk2
kxk2

. (�.�)

In general, if we do not specify a subscript and write k·k, we mean the
spectral or Euclidian norm.

Definition �.�.� (Inner product) The inner product for matrices is

hA, Bi ⇤ tr AB
⇤ , (�.�)

where A, B 2 Cm⇥n .

The inner-product induces the inner-product norm, which for matrices
is the Frobenius norm.

Definition �.�.� (Frobenius norm) The Frobenius norm is defined as

kAk2F ⇤ tr A
⇤
A ⇤ tr AA

⇤
⇤

X
i , j

|Ai j |2. (�.�)

An important class of matrices are unitary/orthogonal matrices.

Definition �.�.� (Unitary/orthogonal matrices) A matrix U 2 Cn⇥n is
called unitary iff U

⇤
U ⇤ UU

⇤
⇤ I. Similarly, a matrix Q 2 Rn⇥n is called

orthogonal iff Q
|

Q ⇤ QQ
|
⇤ I.

Definition �.�.� (Unitarily invariant norm) We say a norm k·kis unitarily
invariant, if kUAk ⇤ kAk holds for any unitary matrix U and any A.

Both the Frobenius norm k·kF and the spectral norm k·k2 are unitarily
invariant.

Our main goal is to find solutions to the linear system (�.��). We introduce
the notion of invertible matrices, which are the main focus of this
work.

� Low-rank approximation ��

�: The symbol is used interchangably for
both the condition number of a matrix and
the wavenumber. To distinguish between
them, we write (·) as a function of a
matrix, whenever we refer to the condition
number.

Definition �.�.� (Invertible matrix) Let A 2 Cn⇥n . Then A is called
invertible if there exists a matrix A

�1 2 Cn⇥n , such that AA
�1

⇤ A
�1

A ⇤ I.

A square matrix is invertible, iff it has full rank.

A useful indicator, that is related to the inverse of a matrix is the spectral
condition number. �

Definition �.�.� (Spectral condition number) Given an invertible matrix
A, the condition number is defined as

(A) ⇤ kA�1k2kAk2. (�.�)

For the purpose of analyzing matrices, we will often use the spectral
decomposition.

Definition �.�.� (Diagonalizable matrix) Let A 2 Cn⇥n be a square
matrix. Then, A is called diagonalizable, if there exists an invertible matrix
P 2 Cn⇥n and a diagonal matrix ⇤ ⇤ diag(�1 , �2 , . . . , �n) 2 Cn⇥n such
that

A ⇤ P⇤P
�1. (�.�)

(�.�) is also the spectral- or eigendecomposition of A. The column vectors of
P are then called the eigenvectors of A. Similarly, �i are called eigenvalues
and the set ⇤ ⇤ {�i}n

i⇤1 is called the spectrum of A.

If a matrix is diagonalizable by a unitary matrix P, we call A unitarily
diagonalizable.

Definition �.�.�� (Normal matrices) The matrix A is called normal iff
A
⇤
A ⇤ AA

⇤.

Proposition �.�.� A matrix A is normal iff there exists a unitary matrix U

and a diagonal matrix ⇤, such that A ⇤ U⇤U
⇤.

Singular value decomposition

As we have mentioned earlier, we may want to decompose the matrix A

and identify the subspace of V , which does not get mapped to 0. This
is achieved by the singular value decomposition (SVD), which has many
useful apllications beyond identifying the range and null space of a
matrix:

Theorem �.�.� (Singular Value Decomposition) Let A 2 Cm⇥n and
m � n. Then there exist unitary matrices U 2 Cm⇥m and V 2 Cn⇥n such
that

A ⇤ U⌃V
⇤ , with ⌃ ⇤

266666664

�1
. . .

�n
0

377777775
2 Rm⇥n , (�.�)

where �1 � �2 � · · · � �n � 0.

� Low-rank approximation ��

The diagonal entries �i ⇤ ⌃ii are called the singular values of A. If they
are ordered as in Theorem �.�.�, then ⌃ is uniquely defined. The column
vectors of U and V are called the left- and right-singular vectors of
A. In the case of a real matrix A 2 Rm⇥n , U and V are real-valued as
well.

Theorem �.�.� kAk2 ⇤ �1 and kAkF ⇤

q
�2

1 + �
2
2 · · · + �2

n .

Theorem �.�.� The non-zero singular values of A are the square roots of the
non-zero eigenvalues of AA

⇤ and A
⇤
A.

An important way of understanding the singular value decomposition is
to understand it as a sum of rank-� matrices

A ⇤

nX
j⇤1
� j u j v

⇤
j , (�.��)

where u j and v j are the columns of U and V respectively. We can
identify the range and null space of A using the singular value decompo-
sition:

Theorem �.�.� The rank of A is the number of non-zero singular values.

Theorem �.�.� range A ⇤ span{u1 , u2 , . . . , uk} and
null A ⇤ span{vk+1 , vk+2 , . . . , vn}, where k ⇤ rank A.

An important Theorem connecting the singular values to the inner
product, is Von Neumman’s trace inequality:

Theorem �.�.� (Von Neumann’s trace inequality) For A, B 2 Rm⇥n

with m � n with singular values �1(A) � �2(A) � · · · � �n(A), and
�1(B) � �2(B) � · · · � �n(B), we have

| hA, Bi | �1(A)�1(B) + �2(A)�2(B) + · · · + �n(A)�n(B). (�.��)

An important consequence is

kA � Bk2F ⇤ |hA � B,A � Bi | ⇤ kAk2F � 2hA, Bi + kBk2F

�
nX

j⇤1
(� j(A) � � j(B))2. (�.��)

Corollary �.�.� (Interlacing property) Let Ak denote the matrix containing
the first k columns of A 2 Cm⇥n . Then

� j(A) � � j(Ak) � � j+n�k(A) for j ⇤ 1, 2, . . . , k (�.��)

The interlacing property follows from the interlacing properties of the
eigenvalues of AA

⇤ [��].

� Low-rank approximation ��

Table �.�: Computational complexity of
common matrix factorizations using dense
matrices A 2 Cm⇥n with m > n or m ⇤ n.

operation complexity
A ⇤ U⌃V

⇤ O(mn2)
A ⇤ P⇤P

�1 O(n3) �

A ⇤ QR O(mn2)
A ⇤ LU O(n3)
A ⇤ QUQ

⇤ O(n3)
�: Due to the equivalence of finding the
eigenvalues of a matrix and polynomial
rootfinding, there cannot be an algorithm
that will compute the spectral decomposi-
tion to arbitrary precision in a fixed num-
ber of steps for matrices of order n 5.
The iterative algorithms referred to, con-
verge to the desired accuracy quickly such
that the stated accuracy is observed in
practice [�, pp. ���].

�: Sparsity can be defined as the num-
ber of zero entries in relation to the total
number of entries in the matrix:

1 � nnz A

mn
.

Other matrix factorizations

We provide a short overview of some other important matrix factoriza-
tions, which will be useful.

Theorem �.�.�� (QR factorization) Let A 2 Cm⇥n and m � n. Then,
there exists a unitary matrix Q 2 Cm⇥m , such that

A ⇤ QR with R ⇤

R1
0

�
⇤ , (�.��)

where R and R1 2 Cn⇥n are upper triangular matrices.

From an algorithmic point of view, the QR decomposition is perhaps the
most important matrix factorization as it is used just about anywhere.
As such, we will be returning to the QR factorization in Section �.�.

Another notable factorization which is the interpolative decomposition,
which represents the original matrix using a subset of the columns of
A:

Theorem �.�.�� (Interpolative decomposition) Let A 2 Cm⇥n be a matrix
of rank k. Then, there exists an index set J ⇤ [j1 , j2 , . . . , jk] and a matrix
X 2 Ck⇥n , such that

A ⇤ A(:, J)X , (�.��)

where X satisfies X(:, J) ⇤ I and 8i , j : |X(i , j)| 1.

The interpolative decomposition proves useful for computing low-rank
representations of matrices using columns of the original matrix A. In
practice, the selection of an optimal set J of columns is an NP-hard
problem and can therefore not be computed in polynomial time. The
condition on the bound on entries in X can be relaxed to 2 rather than 1,
which allows such decompositions to be computed in polynomial time
using rank-revealing QR factorizations (See Section �.�).

Finally, we introduce the Schur decomposition:

Theorem �.�.�� (Schur decomposition) Let A 2 Cn⇥n be a square matrix.
Then, there exists a unitary matrix Q 2 Cn⇥n , such that

A ⇤ QUQ
⇤ , (�.��)

where U 2 Cn⇥n is an upper triangular matrix.

We have not yet specified algorithms to compute these factorizations.
Introductions to numerical algorithms for the computation of such
factorizations are presented in [�, ��]. An overview of the computational
complexity of these algorithms is found in Table �.�.

�.� Sparse matrices

A powerful concept when dealing with large matrices is sparsity. A great
amount of relevant problems in science and engineering have a high
degree of sparsity. �

� Low-rank approximation ��

�: When speaking about the complexity
of algorithms for sparse matrices, it is of-
ten convenient to consider the maximum
number of non-zero entries per column,
which we denote with nnz.

Definition �.�.� (Sparse matrices) et A 2 Cm⇥n . We call A a sparse
matrix if Ai j ⇤ 0 for most entries (i , j) 2 {1, . . . ,m} ⇥ {1, . . . , n}. The
collection of all non-zero indices {(i , j) 2 s .t .Ai j , 0} is called the sparsity
structure or sparsity pattern of A. nnz A denotes the total number of non-zero
entries in A.

The naive way of storing a sparse matrix comes in the form of a coordinate
list (COO format), in which we store the sparsity pattern as a list of
indices (i , j) and a list for the entry values Ai j . It is easy to see that this
format requires only O(nnz A) storage to store the matrix. Similarly,
computing a matrix-vector product x ! Ax only requires us to sum
over the contributions of each non-zero entry and therefore costs only
O(nnz A) flops.

Other operations, however, have become considerably more difficult.
One such operation is the extraction of a submatrix A(I , J), where
I ⇤ {i1 , i2 , . . . , ik} and J ⇤ { j1 , j2 , . . . , jl} are some index sets. This
requires us to go over each entry in A and compare it to the indices in I
and J which makes the complexity of accessing a submatrix O(nnzkl). �

Even if we were to organize I and J into binary-search trees (BST) [��],
this operation would still require O(nnzk log kl log l) operations. This is
an important point here, as many of the algorithms for sparse matrices
involve search algorithms, as there is no a-priori way of knowing where
to find the relevant entries.

A powerful concept in search algorithms is to keep datastructures sorted
at all times, so that accessing them becomes highly efficient [��]. This
idea is effectively realized in the compressed sparse column (CSC)
and compressed sparse row (CSR) formats. Figure �.� illustrates the
representation of a sparse matrix in CSC format. This representation
further compresses the storage by storing a list of pointers colptr, which
indicate where the information for each column is stored. The row indices
and (non-zero) values are stored in the arrays rowind and values. If
we were to access column j, we can directly “jump” to the relevant
portion of rowind and values. This is done by retrieving the pointers
colptr[j] and colptr[j+1], which tell us which section of rowind and
values contain the information belonging to column j. This improves
performance for many algorithms, as it significantly reduces the number
of entries over which we have to search.

colptr: � � � �� �� �� . . .

rowind: � � � � � � � � � � � . . .

values: A11 A31 A41 A81 A91 A22 A42 A13 A33 A45 A85 . . .
Figure �.�: Illustration of sparse matrix
representation in compressed sparse col-
umn (CSC) format.

We leave the discussion of sparse matrices at that, as many of the
algorithms either rely on the specific structure of A or the datastructure
used to store it. Chapter � discusses methods for computing solutions of
linear systems, where the matrix is sparse.

� Low-rank approximation ��

Table �.�: Computational complexity of
common operations using low-rank matri-
ces. A and B are n ⇥ n low-rank matrices
of rank k and x is a n-dimensional vector.

operation complexity
x ! Ax O(kn)
B! A + B O(kn)
B! AB O(kn)

�: In most cases we will denote k✏ with k
to simplify notation.

Figure �.�: Low-rank approximation of
the EPFL logo with a rank of k ⇤ 10. Some
smearing occurs around the letter “P”,
but otherwise the low-rank approxima-
tion does a good job of approximating the
original picture.

�.� Low-rank matrices

Unfortunately, not all problems allow for sparse representations of
their matrices. However, in some cases, we may exploit that the matrix
A 2 Cm⇥n has a low rank k and therefore admits a representation

A ⇤ UV
⇤ , (�.��)

where the matrices U 2 Cm⇥k and V 2 Cn⇥k are called the generators
of A. This representation follows directly from (�.��) and has many
algorithmic advantages, i.e. the storage cost is O(k(m + n)), as opposed
to O(mn) if the matrix is stored as a dense matrix. Depending on the
rank k, this has the potential to yield significant speed-up in common
arithmetic operations such as matrix-vector multiplications. Table �.�
provides an overview of the computational cost of common arithmetic
operations using this representation.

Thus, the question arises in which cases such a representation exists
and how it may be computed. We introduce the notion of numerical
rank.

Definition �.�.� (Numerical rank) For a given tolerance ✏ 2 R>0, the
numerical rank of A is the smallest integer k✏, which permits a matrix Ã of
rank k✏ to approximate A, such that

kA � Ãk ✏. (�.��)

The class of matrices that satisfy (�.��) are much more relevant in practice
than matrices that are actually of low-rank up to machine precision. �

Let us assume that we have somehow obtained a matrix A, which we
know to be of low numerical rank. In this case how should we obtain
the representation (�.��)? Theorem �.�.� provides the answer to this
question.

Definition �.�.� (Rank-k truncation) Consider the singular value de-
composition (�.�) of a matrix A. For a positive integer k n, we call

Ak ⇤ Uk⌃kV
⇤
k (�.��)

the rank-k truncation of A, with Uk ⇤ [u1 , u2 , . . . , uk], Vk ⇤ [v1 , v2 , . . . , vk]
and ⌃k ⇤ diag(�1 , �2 , . . . , �k).

Theorem �.�.� (Eckart-Young-Mirsky) For any unitarily invariant norm
k·k, the best rank-k approximation of a matrix A 2 Cm ⇥ n is its rank-k
truncation:

kA � Ak k ⇤ min
Ã2Cm⇥n

rank(Ã)⇤k

kA � Ãk. (�.��)

The proof for the Frobenius norm k·kF follows by inserting the truncation
into Equation �.��. Similar proofs can be constructed for the general case
by bounding the norm kA � Ãk from below [��].

� Low-rank approximation ��

�: �min(A) and �max(A) denote the mini-
mum and maximum singular values of A

respectively.

�: The terms “rank-revealing” is usually
used to refer to algorithms that produce
QR factorizations that satisfy (�.��).

�: One of the main practical issues with
algorithms for low-rank approximations
is that the ranks of matrices tend to in-
crease with each operation. For instance,
if we add two matrices C ⇤ A + B, we
have rank(C) rank(A)+ rank(B). In the
worst case, the resulting rank of C may be
fairly large. However, in practice it may
be closer to C ⇡ max(rank(A), rank(B)).
This is, however, not reflected by the com-
puted representation. As a consequence,
one has to frequently use recompression.

�.� Rank-revealing QR factorization

The question then arises, which algorithm should be used to compute
low-rank representations of the form (�.��). The SVD will clearly give
us the best answer. However, it is expensive to compute and we may
wish to terminate the computation early if the numerical rank k is much
smaller than the dimensions of the matrix.

Let us revisit the QR-factorization. However this time, we consider the
pivoted version

A⇧ ⇤ QR ⇤
⇥
Q1 Q2

⇤
R11 R12
0 R22

�
, (�.��)

where⇧ denotes a permutation matrix for the columns of A. We have
chosen to partition Q and R to expose the first k columns of Q and the
corresponding upper-triangular block R11 of order k.

Now, let us imagine that A has low numerical rank, such that �k(A) �
�k+1(A). After computing the factorization (�.��) and detecting a signif-
icant drop from �min(R11) to �max(R22), one wonders whether k is the
numerical rank we seek. � By the interlacing property for singular values,
we recover

�min(R11) �k(A) (�.��)

and
�max(R22) � �k+1(A). (�.��)

The first inequality tells us that for a general permutation⇧, we may do
a bad job at separating the row space of A from its nullspace. Moreover,
considering the second inequality, we may overestimate the rank if we
base our rank-estimation on �max(R22).

Definition �.�.� (Rank-revealing QR factorization) Let A⇧ ⇤ QR be
the QR factorization of A⇧ as in (�.��) with

R ⇤

R11 R12
0 R22

�
,

where R11 is the upper triangular block of order k. We call the QR factorization
a rank-revealing QR (RRQR) factorization if it satisfies

�min(R11) �
�k(A)
p(k , n) , (�.��a)

�max(R22) �k+1(A)p(k , n), (�.��b)

where p(k , n) is a function that can be bounded by a low-order polynomial in
k and n.

In other words, this property guarantees that if �k(A) � �k+1(A), it will
be reflected in �min(R11) and �max(R22) [��]. �

Algorithms that compute rank-revealing QR approximations have their
use in rank-estimation, subspace selection and other relevant problems.
In the context of low-rank approximation, they are not only useful
for revealing the numerical rank of A but also to compute a low-rank
representation of the form (�.��). � After computing a rank-revealing

� Low-rank approximation ��

QR factorization A⇧ ⇤ QR, we approximate

A⇧ ⇡ Ã⇧ ⇤ Q1
⇥
R11 R12

⇤
, (�.��)

which is a factorization of the form (�.��) with approximation error
kA�Ãk ⇤ kR22k. By the properties of the rank-revealing QR factorization,
we know that the error is bounded by the best approximation error times
the function p(k , n), i.e. kR22k2 �k+1(A)p(k , n).
There are various algorithms for computing rank-revealing QR factor-
izations [��, ��]. Most of these algorithms share the core algorithms of
either using Householder reflectors or Givens rotations to compute the
factorization [��]. The main difference lies in the strategy for pivoting and
computing⇧. Due to the rank-revealing property, these algorithms allow
to be terminated early. This yields a typical cost of O(kmn) operations
and a worst-case complexity of O(mn2) operations, where k is the rank
at which the algorithm halts.

�.� Random sampling

One of the main problems with the methods presented so far is their
computational cost. While the arithmetic with low-rank matrices is
basically linear, (assuming constant rank k), the compression into low-
rank format is not. In many applications, we may be presented with
a matrix A without having direct access to its entries. Instead we may
have routines to compute matrix-vector products x ! Ax and x ! A

⇤
x

efficiently. Perhaps we also know that A is of low numerical rank and
therefore admits a low-rank representation (�.��). The question arises of
how we can efficiently compute such representations.

Range approximation

Randomized methods provide a solution to this problem [��]. The core
idea is to use random-sampling to extract the dominant column space Q

of A, such that
kA �QQ

⇤
Ak ✏ (�.��)

for some tolerance ✏ and some norm k·k. This is done by forming the
sample matrix S ⇤ A⌦, where⌦ is a n ⇥ k + p standard Gaussian matrix,
and p is a small positive integer. p is called the oversampling parameter
and is used to control the quality of the approximation.

Definition �.�.� (Standard random Gaussian matrix) We call⌦ 2 Rm⇥n

a random Gaussian matrix if each entry⌦i j is drawn independently from the
same standard Gaussian distribution N (0, 1). The columns of⌦ are called
standard Gaussian vectors.

Then, if the singular values of A decay rapidly, S will be a good approx-
imation to the dominant column space of A, and we can extract it by
forming a QR factorization of S.

We consider the simple case where A has exact rank k that is known a
priori. A simple algorithm, that will help us understand randomized

� Low-rank approximation ��

methods is presented in Algorthm �.�. One may ask whether Q reliably

procedure R����� ����� ������(A, k)
Draw an n ⇥ k + p Gaussian random matrix ⌦
Sample A by forming S ⇤ A⌦
Form the QR factorization S ⇤ QR

return Q

end procedure
Algorithm �.�: Randomized range finder
for a matrix A 2 m ⇥ n and a fixed rank k.
p is the oversampling parameter [��].

provides a good approximation of the column space. This is indeed
the case, as it can be shown that if Q is computed using Algorithm �.�
with target rank k � 2 and oversampling parameter p � 2, such that
k + p min{m , n}, then

kA �QQ
⇤
Ak (1 + 9

p
k + p

p
min{m , n})�k+1(A) (�.��)

is satisfied with a probability of at least 1� 3p�p under mild assumptions
on p [��].

Rank estimation via sampling

So far, we have assumed that A is exactly of rank k and that it is known
a priori. In practice, this is rarely the case and we would instead seek
to extract a column space such that (�.��) is met. To do so, we adapt
Algorithm �.� to automatically detect the numerical rank of A.

Lemma �.�.� Let B 2 Rm⇥n with m � n and r a positive integer, as well as
↵ 2 R>0. Then let {!1 ,!2 , . . . ,!r} denote a collection of independently
drawn standard Gaussian vectors. Then

kBk ↵
r

2
⇡

max
i⇤1,2,...,r

kB!i k (�.��)

with a probability of at least 1 � ↵�r .

Proof. Because standard Gaussian vectors are invariant with respect to ro-
tation, without loss of generality, we can assume B ⇤ diag(�1 , �2 , . . . , �n),
where �i ⇤ �i(B) denote the singular values of B. As a consequence, for
a single standard Gaussian vector !, we have

P [↵kB!k kBk] ⇤ P
⇥
↵2kB!k2 kBk2

⇤
⇤ P

"
↵2

nX
i⇤1
�2

i!
2
i �2

1

#

 P
⇥
↵2!2

1 1
⇤
⇤

1p
2⇡

π 1/↵

�1/↵
exp

✓
� t2

2

◆
dt

r

2
⇡
↵�1.

Then, if we repeat this experiment r times, we find that the probability of
(�.��) is bounded from below by 1� ↵�r , which concludes the proof.

Lemma �.�.� offers insight into when our approximation satisfies a certain
tolerance with a high probability. On the other hand, it does not tell us

� Low-rank approximation ��

16 18 20 22
0

20

40

estimated rank k✏

fr
eq

ue
nc

y

Figure �.�: Comparison of rank estimators
on ��� samples of random matrices of
order ��� with �i ⇤ 2�i , for ✏ ⇤ 2�16.
The red histogram depicts the frequency
of ranks estimated using the Frobenius
norm estimator (�.��). The blue histogram
depicts the frequency of ranks estimated
using the spectral norm estimator (�.��)

how accurate this estimate may be. Moreover, there is a good chance
that it will overestimate the rank as it is not a sharp estimate and aims to
bound the norm from above with high probability. This is illustrated in
Figure �.�, where we depict the estimated ranks of ��� random rank-��
matrices.

Let us again consider the matrix B 2 Rm⇥n with singular value decompo-
sition B ⇤ U⌃V

⇤ and standard Gaussian matrix⌦ 2 Rn⇥r with columns
!i . Then, the estimator

1
r
kB⌦k2F ⇤

1
r

rX
i⇤1
!⇤i (B⇤B)!i ⇤

rX
i⇤1
!̃⇤i (⌃⇤⌃)!̃i (�.��)

is an unbiased estimator of the Frobenius norm [��]. Here !̃i ⇤ V!i de-
note rotated standard random vectors, which are also standard Gaussian
vectors. We can verify that the expected value is indeed the square of the
Frobenius norm of B:

E

1
r
kB⌦k2F

�
⇤ kBk2F . (�.��)

With these estimates, we can return to the random range finder (Algo-
rithm �.�) and modify it to adaptively choose the rank k, based on a
supplied tolerance (Algorithm �.�).

procedure A������� ����� ������(A, ✏, r)
Set k 0
do

Set k k + kstep
Draw a n ⇥ k Gaussian random matrix⌦1
Draw a n ⇥ r Gaussian random matrix⌦2
Sample A by forming

⇥
S1S2

⇤
⇤ A

⇥
⌦1 ⌦2

⇤
Form the QR factorization S1 ⇤ QR

Form S2 S2 �QQ
⇤
S2 to compute (A �QQ

⇤
A)⌦2

Use S2 to compute the estimator of choice est
while est > ✏
return Q, k

end procedure

Algorithm �.�: Adaptive range finder. The
estimator est can be selected to estimate
the norm in either the spectral or the Frobe-
nius norm.

Randomized interpolative decomposition

The interpolative decomposition (�.��) has a useful property in the
context of random sampling. If we apply the interpolative decomposition
to S

⇤
⇤ S
⇤(:, I)X we observe that

A⌦ ⇤ S ⇤ X
⇤
S(I , :) ⇤ X

⇤
A(I , :)⌦. (�.��)

In other words, we obtain the matrix X
⇤ and the index set I, which

are also a valid interpolative decomposition of the original matrix A.
We can compute the interpolative decomposition by using a pivoted
QR-decomposition S

⇤⇧ ⇤ QR, which yields

S
⇤
⇤ Q

⇥
R1 R2

⇤
⇧⇤ ⇤ QR1

⇥
I R

�1
1 R2

⇤
⇧| {z }

⇤X

⇤ S
⇤(:, I)X . (�.��)

� Low-rank approximation ��

�: The unitary matrix Q does not denote
the matrix from (�.��), but rather the ma-
trix computed using Algorithm �.�.

The question arises, of how good such a representation might be in
relation to the approximation QQ

⇤
A, where Q is the unitary column

space extracted from the sample matrix S. � Thus, assuming span(Q) ⇤
span(S) yields

S ⇤ QQ
⇤
S ⇤ X

⇤
S(I , :) ⇤ X

⇤
Q(I , :)Q⇤S

() Q ⇤ X
⇤
Q(I , :).

Using this identity, we have

kA � X
⇤
A(I , :)k kA � X

⇤
Q(I , :)Q⇤Ak + kX ⇤Q(I , :)Q⇤A � X

⇤
A(I , :)k

 kA �QQ
⇤
Ak + kX kkQ(I , :)Q⇤A � A(I , :)k

 (1 + kX k)kA �QQ
⇤
Ak.

If we fix k·k to be the Frobenius norm and assume that S is a m⇥ k matrix
(i.e. p ⇤ 0, no oversampling), we have

kA � X
⇤
A(I , :)kF (1 +

p
1 + 4k(m � k))kA �QQ

⇤
AkF , (�.��)

where we have used the properties of X to bound its norm [��].

Sparse direct solvers �
�.� Graph elimination ��
�.� LDR Factorization ��
�.� Fill-in and reorderings ��

Bandwidth reduction ��
Nested dissection ��

�.� Structured elimination . . . ��

Our main focus lies on solving the linear system

Ax ⇤ b , (�.��)

where A 2 Rn⇥n is an invertible sparse matrix and b 2 Rn is a right-hand
side. This chapter is dedicated to direct methods, which are usually, in
some form or another, equivalent to Gaussian elimination. Gauss did
not have computers at his disposal and so we need to adapt Gaussian
elimination to the setting of modern-day computing. To do so, we exploit
the sparsity and structure of A to construct methods adapted to this
specific problem.

�.� Graph elimination

The most well-known algorithm in computational linear algebra is likely
to be Gaussian elimination. Applying Gaussian elimination to sparse
linear systems will prove educational in our quest to better understand
the challenges of efficiently solving (�.��).

A sparse matrix A can be understood as the connectivity matrix of
some weighted graph G(A), where two nodes i , j 2 G are connected iff
A(i , j) , 0.

Definition �.�.� The adjacency graph G(A) of a matrix A of dimensions
n ⇥ n is a graph(V, E) such that V is a set of n vertices, where vertex i
is associated with the i-th degree of freedom. There is an edge (i , j) 2 E iff
A(i , j) , 0 and i , j.

The value A(i , j) is then associated with the weight of the corresponding
edge. We ignore these values for now and concentrate on the sparsity
pattern of A. Figure �.� depicts a sparse matrix with its corresponding
graph. We observe that for every entry in the matrix, there is an edge in
the graph as we expected. As A has a symmetric sparsity pattern, G can
be represented by an undirected graph, as every entry A(i , j), implies
the existence of the reverse edge A(j, i).

⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥

⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

26666666666664

37777777777775

� � � � � � �
�
�
�
�
�
�
�

(a) sparsity pattern of A

�

�

�

�

�

�

�

(b) corresponding graph

Figure �.�: We can understand sparse ma-
trices as the connectivity matrix of its adja-
cency graph. Here the matrix is symmetric,
so the graph is not directed.

� Sparse direct solvers ��

⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥

⇥ ⇥ • ⇥ • •
⇥ ⇥ • ⇥ • ⇥

⇥ ⇥ ⇥
⇥ ⇥ • • ⇥ •
⇥ • ⇥ ⇥ • ⇥

26666666666664

37777777777775

� � � � � � �
�
�
�
�
�
�
�

(a) sparsity pattern after elimination

�

�

�

�

�

�

�

(b) corresponding graph

Figure �.�: The elimination of degrees of
freedom can be understood as a graph
elimination procedure. The elimination of
node � connects nodes �, �, � and � with
eachother. This leads to fill-in, as seen on
the right.

We can now identify Gaussian elimination with the elimination of
graph nodes in G. To illustrate this, let us perform one step of Gaussian
elimination to the matrix A. The elimination of the first degree of freedom
is depicted in Figure �.�. As node � is connected to nodes �, �, � and �, we
will add a multiple of the first row to these rows. This will eliminate the
first entries in those rows, thus decoupling node � from it’s neighbors �,
�, � and �. However, this also adds new entries to these rows, which are
depicted as black dots in Figure �.�. This effect is called fill-in and is one
of the major challenges for the development of sparse direct solvers.

Let us now have a look at the graph of the newly formed matrix. Figure
Figure �.� depicts the situation after the first elimination step. We see
that node � is now decoupled from the remaining graph. On the other
hand, the fill-in created new edges, connecting nodes �, �, � and � with
eachother. Therefore, we can regard Gaussian elimination for sparse
matrices as a graph elimination algorithm, where nodes are subsequently
isolated from the graph. Whenever we eliminate a node, we have to
connect other nodes, previously connected to the eliminated node, with
eachother. With this example, we begin to understand the problem of
fill-in on a graphical level. At each elimination step, we potentially create
many new edges, depending on how many nodes were connected to the
eliminated node.

�.� LDR Factorization

Let us formalize the Gaussian elimination procedure. The elimination of
the first degree of freedom can be written as

A ⇤

a11 a12
a21 A22

�

⇤

1 0

a21/a11 I

�
a11 0
0 A22 � a21a�1

11 a12

�
1 a12/a11
0 I

�
⇤ L̃

(1)
Ã

(1)
R̃

(1) ,

where I are identity matrices of corresponding size. Instead of eliminating
nodes individually, we can group them into so-called supernodes and

� Sparse direct solvers ��

eliminate entire blocks. The above elimination step then takes the form

A ⇤

A11 A12
A21 A22

�

⇤

"
I 0

A21A
�1
11 I

#

| {z }
⇤L̃

(1)

"
D

(1) 0
0 S

(1)

#

| {z }
⇤Ã

(1)

"
I A

�1
11 A12

0 I

#

| {z }
⇤R̃

(1)

(�.�)

with D
(1)

⇤ A11 and S
(1)

⇤ A22 � A21A
�1
11 A12, where S

(1) is called the
Schur complement. The matrices L̃

(1) and R̃
(1) are called the left and

right transforms of the factorization and are lower and upper-triangular
matrices. Due to their special structure, they can be trivially inverted by
changing the sign of the off-diagonal block

I 0

A21A
�1
11 I

� �1

⇤

I 0

�A21A
�1
11 I

�
.

We proceed the factorization recursively by applying (�.�) to the Schur
complements S

(i). At the i-th iteration, the matrix Ã
(i) has the form

Ã
(i)

⇤

"
D

(i) 0
0 S

(i)

#
.

Factoring the Schur complement as

S
(i)

⇤ L̃
(i+1)

"
S
(i)
11 0
0 S

(i+1)

#
R̃

(i+1)

yields the intermediate matrix Ã
(i+1) for the next iteration:

Ã
(i)

⇤L
(i+1)

Ã
(i+1)

R
(i+1)

⇤

2666664
I 0

0 L̃
(i+1)

3777775

2666664
D

(i) 0

0 S
(i)
11 0
0 S

(i+1)

3777775

2666664
I 0

0 R̃
(i+1)

3777775
.

At the next iteration, the diagonal block includes D
(i+1)

⇤ diag(D(i) , S(i)
11)

and we repeat the procedure on S
(i+1). Starting with Ã

(i)
⇤ A and

proceeding repeatedly for r steps yields the desired factorization

A ⇤ L
(1)

L
(2) . . . L(r)

Ã
(r)

R
(r) . . .R(2)

R
(1) , (�.�)

where Ã
(r) is either diagonal or block-diagonal, depending on whether

we chose to eliminate individual nodes or supernodes. Evaluating the
product L

(1)
L
(2) . . . L(r) yields a lower-triangular matrix and similarly

for the right transforms. As such, we have succeeded in computing a
factorization of the form A ⇤ LDR, where D is block-diagonal and L, R

are lower and upper-triangular. Computationally, it is more efficiently
to store the L and R implicitly, i.e., individually and only as off-diagonal
blocks, as this makes the application cheaper and reduces the storage
requirements.

� Sparse direct solvers ��

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ • • • • •
⇥ • ⇥ • • • •
⇥ • • ⇥ • • •
⇥ • • • ⇥ • •
⇥ • • • • ⇥ •
⇥ • • • • • ⇥

26666666666664

37777777777775

� � � � � � �
�
�
�
�
�
�
�

(a) arrowhead matrix

⇥ ⇥
⇥ ⇥

⇥ ⇥
⇥ ⇥

⇥ ⇥
⇥ ⇥

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

26666666666664

37777777777775

� � � � � � �
�
�
�
�
�
�
�

(b) permuted arrowhead matrix

Figure �.�: Elimination of the first node in
the arrowhead matrix results in excessive
fill-in. If we instead permute the first and
last node, we can avoid it altogether.

0 1,000 2,000

0

1,000

2,000

nnz ⇤ 135042

Figure �.�: Sparsity pattern of the L factor
in A ⇤ LR for the Helmholtz problem
depicted in Figure �.�.

�: One might also wish to permute A to
ensure the stability of the Gaussian elimi-
nation [��].

�.� Fill-in and reorderings

After seeing the graph elimination algorithm in Section �.�, one might
suspect that the order in which nodes are eliminated plays a big role in
how much fill-in is created. Figure �.� illustrates an extreme case, where
the elimination of the first node leads to a dense remainder matrix. In
this example, fill-in can be avoided alltogether by simply permuting
node � and node �. This structure is often referred to as an arrowhead
pattern. Another, less extreme example of fill-in is shown in Figure �.�,
and depicts the sparsity pattern of the left transform L of the Galerkin
matrix associated with Figure �.�.

It is often beneficial to seek permutation matrices⇧I and⇧J such that
the fill-in is minimized when ⇧IA⇧J is factored. � This however, is a
NP-hard combinatorial problem [��] as can be seen by considering the
Graph elimination problem discussed earlier in Section �.�. As such,
we have to resort to heuristics for finding a suitable permutations ⇧I
and ⇧J , which reduce (but not necessarily minimize) the fill-in. This
has been a field of intense study and there exist a plethora of strategies
for finding such permutations [��, ��–��]. We discuss two of the most
popular strategies, which are bandwidth-reduction and nested dissection.

In the context of graph elimination, so-
called triangulated graphs are particularly
interesting. A graph is triangulated if any
cycle bigger than � has a chord, that is,
an edge joining non-consecutive vertices
within the cycle. It can be shown that these
graphs allow for an elimination reordering
without fill-in [��].

Bandwidth reduction

One intuitive way of reducing fill-in is to concentrate the entries as close
to the diagonal as possible to get a banded matrix. This problem is related
to the graph bandwidth problem, in which we arrange our nodes along
a line and permute them to minimize the longest edge [��].

Definition �.�.� (Bandwidth of a matrix) Let A 2 Cm⇥n be a matrix
and I ⇤ {1, 2 . . . ,m}, J ⇤ {1, 2 . . . , n} its index sets. We call the smallest
positive integer w, for which

8i 2 I , j 2 J : |i � j | > w ⇤) A(i , j) ⇤ 0 (�.�)

the bandwidth of A.

Let us establish that fill-in can only occur within the bandwidth of the
matrix.

� Sparse direct solvers ��

0 1,000 2,000

0

1,000

2,000

nnz ⇤ 25760

(a) sparsity pattern of⇧I A⇧J

0 1,000 2,000

0

1,000

2,000

nnz ⇤ 101954

(b) sparsity pattern of L

Figure �.�: Sparsity plots of reordered
Galerkin matrix and associated L factor
after RCM reordering.

Proposition �.�.� Let A 2 Cn⇥n be a matrix with bandwidth w and let
A ⇤ LR, where L and R are lower and upper triangular matrices. Then, L

and R have a bandwidth no bigger than w.

Proof. We can partition A ⇤ LR

A ⇤

A11 A12
A21 A22

�
⇤

L11 L12
L21 L22

�
| {z }

⇤L

R11 R12
R21 R22

�
| {z }

⇤R

,

such that L and R have a compatible block structure and A21 ⇤ L21R11 +

L22R21. Choose any integer i such that w + 1 i n and let A21 be the
bottom left zero block of dimensions (n � i + 1)⇥ (i � w � 1). Taking L21
to have the same dimension as A21 yields

0 ⇤ A21 ⇤ L21R11 + L22R21 ⇤ L21R11

as R21 ⇤ 0 is below the diagonal of R. R11 is the (i � w � 1) ⇥ (i � w � 1)
top left triangular block and depends on A11. As the condition must be
fulfilled for arbitrary A11, we conclude that L21 ⇤ 0 and therefore L has
bandwidth w. A similar argument can be made for R, which concludes
the proof.

Thus, minimizing the bandwidth is likely to decrease the fill-in, although
there is no guarantee. There exist a number of algorithms for the reduction
of the bandwidth of a sparse matrix. The most prominent entries are
Reverse Cuthill-McKee (RCM) and minimum degree reordering [��,
��].

We introduce the Cuthill-McKee algorithm, which constructs permuta-
tion⇧ (as an ordered tuple) based on the sparsity pattern G(A).

Definition �.�.� Let A 2 Cn⇥n and I ⇤ {1, 2, . . . , n}. Then, the adjacency
of a set J ✓ I on A is defined as

adj
A
(J) ⇤ {i 2 I : 9 j 2 J s.t. A(i , j) , 0}. (�.�)

procedure R������ C������-M�K��(A)
Set i ⇤ 0
Select a node v with a minimum number of neighbors
Set⇧ ⇤ ⇧0 ⇤ {v}
while |⇧| < n do

Construct the set of adjacent nodes⇧i+1 ⇤ adj
A
(⇧i) \⇧

Sort⇧i+1 by earliest occurance of a neighbor in⇧
Append⇧i+1 to⇧
i i + 1

end while
Reverse⇧
return⇧

end procedure

Algorithm �.�: Reverse Cuthill-McKee
reordering. Constructs a bandwidth-
reducing reordering⇧ based on the spar-
sity pattern of A.

Figure �.� depicts the sparsity pattern of the Galerkin matrix (Figure �.�)
after reordering it with the reverse Cuthill-McKee heuristic. We can see
that RCM succeeds in reducing the bandwidth and therefore the fill-in

� Sparse direct solvers ��

3

3

3

3

2 21

(a) nested dissection on mesh

3
3

2
3

3
2

1
(b) corresponding per-
mutation of the matrix

Figure �.�: Illustration of a simple nested
dissection on a finite element mesh.

�: We call the nodes of the elimination
tree supernodes.

in the L factor. Compared to the unreordered version in Figure �.�, it
has lost about a quarter of the fill-in.

Nested dissection

Let us now pursue a different approach. The adjacency graph of a p ⇤ 1
finite element matrix is the same as the mesh on which it was constructed.
As a consequence, the adjacency graphs of finite element matrices often
look like the graph depicted in Figure �.�a.

The core idea of nested dissection is to recursively find separating sets
of indices, which split the adjacency graph into smaller subgraphs. In
Figure �.�a, we choose the separator 1, which splits the mesh and the
graph, into the left and right subgraphs. We move the associated degrees
of freedom to the end of the matrix, as illustrated in Figure �.�b.

One way of storing the permutation is as a simple sorted tuple of the
index set I. However, the nested dissection has more structure as it
is hierarchically organized like a tree. We will see later that this can
be exploited for parallel and distributed computations. As such, it is
preferrable to store the reordering in the form of a tree.

Definition �.�.� (Elimination tree) Let A be a sparse matrix of order n
and I ⇤ {1, 2, . . . , n} its index set. Let E be a tree, where each node µ 2 E
is associated with an index set Iµ ⇢ I. Then, E is called an elimination tree of
A iff

I all index sets are disjoint: 8µ , ⌫ : Iµ \ I⌫ ⇤ ;
I the union of all index sets is the entire set,

S
µ2E Iµ ⇤ I

I For any two indices i 2 Iµ, j 2 I⌫ with µ > ⌫, A(i , j) , 0 or
A(j, i) , 0 implies that ⌫ is a descendant of µ. In other words, the
node ⌫ is included in the subtree rooted at node µ.

15

1
3

2

4
6

5
7

8
910

11 1213
14

⌦

(a) nested dissection of⌦

��

�
�

� �

�

� �

��
��

� �

��

�� ��

E

(b) corresponding elimination tree

Figure �.�: Illustration of a nested dissec-
tion of the computational domain⌦ using
separators. The figure on the right depicts
the corresponding post-ordered tree data-
structure E , which induces an elimination
order.

The last property of Definition �.�.� guarantees that all fill-in for the node
Iµ has already been summed up, when it is being eliminated. Figure �.�
depicts a nested dissection and its corresponding elimination tree on the
domain⌦. �

Algorithm �.� summarizes the nested dissection algorithm for computing
an elimination tree E of the degrees of freedom I, based on the adjacency
graph G(A) of the matrix. So far, we have exploited the equivalence
of the finite element mesh and the adjacency graph, which allows us
to use geometric information when choosing the separators. More pre-
cisely, we have used geometric bisection to compute it. We distinguish
between geometric and algebraic nested dissection, depending on how
the separators are chosen. In the latter case, only the adjacency informa-
tion of G(A) is used to compute such a reordering. For geometrically

� Sparse direct solvers ��

procedure N����� ����������(G)
Find an index set I ⇢ vertices(G) which splits G into I and the

disconnected graphs G1 and G2
Call E1 N����� ����������(G1)
Call E2 N����� ����������(G2)
Create treenode E containing I
Append E1 and E2 as children of E
return E

end procedure Algorithm �.�: General nested dissection
algorithm

0 1,000 2,000

0

1,000

2,000

nnz ⇤ 25760

Figure �.�: Sparsity pattern of the Galerkin
matrix after nested dissection reordering.

�

µ ⌫

Figure �.�: Elimination of the supernode
�. Contributions from the elimination of
its children µ and ⌫ have to be accounted
for.

chosen separator on meshes such as the one in Figure �.�a, [��] proves
that the nested dissection algorithm will yield a reordering which mini-
mizes the fill-in. Figure �.� shows the reordered Galerkin matrix (Figure
�.�), where geometric nested dissection has been used to compute the
permutation.

�.� Structured elimination

Let us return to sparse Gaussian elimination. However this time, using
an elimination tree E to guide us through the elimination process. We
assume that the elimination tree is a binary tree as this will considerably
simplify our discussion. The generalization to more general elimination
trees is straightforward albeit involved. We assume we are at node � in
the elimination tree, which has children nodes µ and ⌫ as illustrated in
Figure �.�.

In contrast to the block elimination process in Section �.�, we do not
have to keep the entire Schur complement in memory to compute the
factorization of node �. Instead, we only have to consider I� and the
adjacency of I�, which has not yet been eliminated. Let desc(�) denote
the set of all descendants of � in E and, similarly, let anc(�) denote the
set of all ancestors of �. Then, we define the boundary of � as the index
set

B� ⇤
⇢

i 2
[
◆2anc(�)

I ◆ : 9 j 2 I� s.t. A(i , j) , 0 or A(j, i) , 0
�

⇤ adj
A
(I�) \

[
◆2desc(�)

I ◆ . (�.�)

We consider the matrix Ã
(�), which is the result of eliminating all indices

in desc(�). The short-hand notation Ã
(�)
ib ⇤ Ã(I� , B�) is used to denote

relevant submatrices of the big matrix Ã
(�). The relevant portion of Ã

(�)

is

Â
(�)

⇤

"
Ã

(�)
ii Ã

(�)
ib

Ã
(�)
bi Ã

(�)
bb

#
⇤

"
I 0

L̂
(�)

I

"
D̂

(�) 0
0 Ŝ

(�)

"
I R̂

(�)

0 I

#
. (�.�)

Here, we have factored Â
(�) by introducing the diagonal block for

elimination
D̂

(�)
⇤ Ã

(�)
ii , (�.�)

� Sparse direct solvers ��

�: In some cases, we will instead split the
index set I at the root into some boundary
degrees of freedom and interior degrees
of freedom. In these cases, we will have to
apply the inverse of the resulting top-level
Schur complement.

the left and right factors

L̂
(�)

⇤ Ã
(�)
bi

�
Ã

(�)
ii

� �1
, (�.�a)

R̂
(�)

⇤
�
Ã

(�)
ii

� �1
Ã

(�)
ib , (�.�b)

and the Schur complement

Ŝ
(�)

⇤ Ã
(�)
bb � Ã

(�)
bi

�
Ã

(�)
ii

� �1
Ã

(�)
ib . (�.�)

An important distinction that we make here is that matrices with a “ˆ”
denote intermediate matrices of the factorization. These are local and
small. In other words, these matrices do not have the size of the overall
matrix or the intermediate matrices denoted with a “˜”, which are “big”
matrices. However, these matrices are associated with some indices of
the big matrices A and Ã. To simplify our discussion, we will use global
indices associated with the big matrix A to index the smaller matrices
denoted with a “ˆ”. This allows to handle these smaller matrices while
keeping in mind where they belong in the overall scheme.

Proposition �.�.� To fully represent the overall factorization A ⇤ LDR, it
is sufficient to store the small matrices D̂

(�), L̂
(�), R̂

(�), as well as their index
sets for each node � in E .

One way of seeing this is to see how the left transform L̃
(�) can be

constructed from the corresponding small matrix L̂
(�). For any index

(i , j) 2 B� ⇥ I�, we have L̃
(�)(B� , I�) ⇤ L̂

(�) and for (i , j) < B� ⇥ I�,
L̃
(�)(i , j) ⇤ �(i , j). We recall from Section �.� that the left and right

transforms can be inverted by changing the sign of the block below the
diagonal. Consequently, we can apply the inverse of the factorization
as in Algorithm �.�, which confirms Proposition �.�.�. It is worth noting
that at the top level, due to the definition of the elimination tree, the
boundary will be the empty set. Therefore, at the top level it suffices to
invert the remaining diagonal block D̂

(�). �

for all nodes � 2 E from the bottom up do
Apply b(B�) �L̂

(�)
b(I�) + b(B�)

end for
for all nodes � 2 E do

Apply b(I�) �
D̂

(�)� �1
b(I�)

end for
for all nodes � 2 E from the top down do

Apply b(I�) b(I�) � R̂
(�)

b(B�)
end for
return b

Algorithm �.�: Apply the inverse A
�1

⇤

R
�1

D
�1

L
�1 to a vector b.

We still need an operation to assemble the intermediate matrix Ã
(�), after

factoring Ã
(µ) and Ã

(⌫). To do so, we introduce the update matrix

Û
(�)

⇤ �Ã
(�)
bi

�
Ã

(�)
ii

� �1
Ã

(�)
ib , (�.��)

which is added to the corresponding indices of Ã
(�) to form the Schur

complement (�.�). More importantly, Û
(�) contains all of the updates

� Sparse direct solvers ��

of its children nodes, which is a consequence of the properties of the
elimination tree E . To form Â

(�), we have to sum the contributions of
Û

(µ) and Û
(⌫) to the right places in A

(�) and extract the right submatrix.
This can be formalized by introducing the extend-add operator.

Definition �.�.� (extend-add) Let A be the matrix to be factored and
I ⇤ {1, 2, . . . , n} its index set. Then, let B̂ and Ĉ be matrices associated to
the global index sets I

B̂
✓ I and I

Ĉ
✓ I respectively. We define the index

sets I1 ⇤ I
B̂
\ I

Ĉ
, I2 ⇤ I

B̂
\ I

Ĉ
and I3 ⇤ I

Ĉ
\ I

B̂
. Up to a permutation, the

extend-add operation is then defined as

B̂ l$ Ĉ ⇤

266664
B̂(I1 , I1) + Ĉ(I1 , I1) B̂(I1 , I2) Ĉ(I1 , I3)

B̂(I2 , I1) B̂(I2 , I2) 0
Ĉ(I3 , I1) 0 Ĉ(I3 , I3)

377775
. (�.��)

Using the short-hand notation A
(�)
ib ⇤ A(I� , B�) from before, we can now

write

Â
(�)

⇤

"
Ã

(�)
ii Ã

(�)
ib

Ã
(�)
bi Ã

(�)
bb

#
l$ Û

(µ) l$ Û
(⌫). (�.��)

Instead of forming the Schur complement Ŝ
(�), we can factor

F̂
(�)

⇤

"
Ã

(�)
ii Ã

(�)
ib

Ã
(�)
bi 0

#
l$ Û

(µ) l$ Û
(⌫) , (�.��)

which directly yields the update matrix Û
(�) in place of the Schur

complement. The matrix F̂
(�) is called a frontal matrix. Sparse direct

solvers, which organize the Gaussian elimination as described are also
called frontal solvers [��]. These methods organize the elimination into a
“front”, hence the name.

We wrap up the discussion of structured, sparse direct solvers by consid-
ering the computational work required to form the factorization. Let us
consider the nested dissection of a d-dimensional domain. In relation to
the overall size n, the top level separator has a size of O(n d�1

d) for d � 2.
Consequently, the size of matrices to factor at each level l behaves as

nl ⇠ 2�
d�1

d (l�1)n
d�1

d . (�.��)

In other words, the size of the separators is divided by 2d�1 every d
levels [��]. Assuming that the cost of forming the intermediate matrices
is negligible, the work to be performed at each node is of order O(n3

l).
Summing over all levels l ⇤ 1, 2, . . . , L yields the total amount of work

W ⇠
LX

l⇤1
2l�1n3

l ⇠
LX

l⇤1

�
2�

2d�3
d

� l�1n3 d�1
d ⇤ n3 d�1

d
1 � 2�

2d�3
d L

1 � 2�
2d�3

d

⇤) W . n3 d�1
d . (�.��)

We conclude that in two dimensions, the cost of structured elimination
scales as O(n 3

2) while in three dimensions the scaling is O(n2).

Iterative solvers �
�.� Krylov spaces ��
�.� The Arnoldi iteration ��
�.� GMRES ��
�.� Convergence of GMRES . . ��
�.� Preconditioning ��

In the previous chapter we focused on direct solvers that compute the
solution to the linear system (�.��) in one step. The downside of such
methods is their O(n2) cost in operation count and storage requirement.
Moreover, in many cases we can compute matrix-vector products x !
Ax in O(n) operations without needing to form the matrix. We might be
tempted to exploit this and seek to solve the linear system only using
matrix-vector multiplications. This gives rise to iterative methods. In this
chapter we focus on Krylov subspace methods and GMRES in particular,
as this is the focus of the subsequent work. For a much more in-depth
treatment, we refer the reader to the excellent treatment of this topic in
[�, ��].

�.� Krylov spaces

Krylov subspace methods are closely related to the subspace- and power
iteration [��]. These algorithms attempt to compute good approximations
to the dominant k eigenvectors of A, by repeatedly applying A to the
same vector.

Definition �.�.� (Krylov subspace) Let A 2 Cn⇥n and b 2 Cn . Then,

Kk(A, b) ⇤ span
n

b ,Ab , . . . ,Ak�1
b

o
(�.�)

is called the k-th Krylov subspace of A and b.

As a consequence, we can write any vector x 2 Kk(A, b) as a linear
combination of powers of A times b:

x ⇤ c0b + c1Ab + c2A
2
b + . . . ck�1A

k�1
b ⇤ p(A)b (�.�)

In other words, x is a polynomial p(z) ⇤ c0 + c1z + c2z2
+ . . . ck�1zk�1 in

A times b.

�.� The Arnoldi iteration

Let us consider that we would like to compute a basis for the k-th Krylov
subspace Kk(A, x0) of a given matrix A and starting vector x0. One might
imagine that repeatedly multiplying A to x0 might indeed not be the
best way to go about it, as we would expect vectors to quickly converge
to the eigenvector of the dominant eigenvalue, as in the power-iteration.
Therefore, some form of orthonormalization is needed for the method
to instead converge to the k-dimensional subspace spanned by the first
k dominant eigenvectors. This is the core idea of the Arnoldi method,
which we will introduce in this section.

� Iterative solvers ��

A key piece in all of this is the following Lemma, which gives us a hint
of how we might construct an orthogonal basis:

Lemma �.�.� Let A 2 Cn⇥n , x0 2 Cn , and let {q1 , q2 , . . . , qk}, as well as
{q1 , q2 , . . . , qk , qk+1}, be bases of Kk(A, x0) and Kk+1(A, x0), respectively.
Then

Kk+1(A, x0) ⇤ span {q1 , q2 , . . . , qk ,Aqk}. (�.�)

In other words, once we have an orthonormal set of vectors spanning
Kk(A, x0), we can simply multiply the last basis vector and orthonormal-
ize the result. This is the Arnoldi iteration, which is given in Algorithm
�.�.

procedure A������ I��������(A, x0)
Set q1 ⇤ x0/kx0k2 and Q1 ⇤ q1
for j ⇤ 1, 2, . . . , k do

Compute w ⇤ Aq j
Compute h j ⇤ Q

⇤
j w

Compute q̃ j+1 ⇤ w �Q j h j
Set hj+1, j ⇤ kq̃ j+1k2
Set q j+1 ⇤ q̃ j+1/hj+1, j
Append Q j+1 ⇤ [Q j , q j+1]

end for
end procedure

Algorithm �.�: Arnoldi iteration.
Compute orthonormal basis Qk+1 of
Kk+1(A, x0)

To better analyze the algorithm, let us take a step back and consider a
matrix A 2 Cn⇥n and its reduction to upper Hessenberg form AQ ⇤ QH

where Q is a unitary matrix and H a Hessenberg matrix. As n is typically
very large, we are only interested in the first k columns of AQ ⇤ QH . Let
Qk ⇤ [q1 , q2 , . . . , qk] contain the first k columns of Q. With H̃k denoting
the (k + 1) ⇥ k upper-left section of H

H̃k ⇤

266666666664

h11 h12 · · · h1k

h21 h22
. . .

...
. . .

. . . hk�1,k
hk ,k�1 hk ,k

hk+1,k

377777777775

, (�.�)

we can write the Arnoldi decomposition

AQk ⇤ Qk+1H̃k , (�.�)

and more precisely,

2666666664
A

3777777775

2666666664
q1 . . . qk

3777777775
⇤

2666666664
q1 . . . qk+1

3777777775

2666666664

h11 · · · h1k

h21
...

. . .
...

hk+1,k

3777777775
.

� Iterative solvers ��

By taking the last column of (�.�), we find the recurrence relation

Aqk ⇤ h1k q1 + · · · + hkk qk + hk+1,k qk+1 ,

which connects the new Krylov vector qk+1 to previous iterates. By
rewriting this as

Aqk ⇤ Qk hk + hk+1,k qk+1 ⇤ Qk hk + q̃k+1

with w ⇤ Aqk and

w ⇤ Aqk , hk ⇤ Q
⇤
k w ⇤

2666664

h1k
...

h1k

3777775
, q̃k+1 ⇤ w �Qk hk , hk+1,k ⇤ kq̃k+1k2 ,

we recover the Gram-Schmidt process, applied to the Krylov vectors w,
and therefore Algorithm �.�.

�.� GMRES

Among the iterative solvers for linear systems, the generalized minimum
residual method (GMRES) [��] is a popular choice for nonsymmetric
problems. The idea of GMRES is a simple one: At step k, we seek to find a
vector xk in the Krylov subspace Kk(A, r0), which minimize the �-norm
of the residual rk ⇤ b � Axk . To this end, we use the Arnoldi method
to compute an orthonormal basis Qk ⇤ [q1 , q2 , . . . , qk] which spans the
Krylov space.

Thus, we consider the minimization problem

min
x2x0+Kk (A,r0)

kb � Axk2. (�.�)

Let x̃ ⇤ x0 + Qk y 2 x0 + Kk(A, r0) with some y 2 Rk , and solve the
above above minimization problem. We can then write

kb � Ax̃k2 ⇤ kr0 � AQk yk2 ⇤ kr0 �Qk+1H̃k yk2
⇤ kQk+1(�0e1 � H̃k y)k2 ⇤ k�0e1 � H̃k yk2 (�.�)

where we have used Equation �.� and �0 ⇤ kr0k2. By projecting into the
Krylov subspace, we have reduced the size of the minimization problem
�.� to (k + 1) ⇥ k dimensions:

min
y2Rk
k�0e1 � H̃k yk2. (�.�)

The least-squares problem (�.�) is then solved by

yk ⇤ �0(H̃ ⇤k H̃k)�1
H̃
⇤
k e1 , (�.�)

which can be computed using the QR decomposition. The Hessenberg
structure of H̃k can be exploited to form the QR decomposition using
k Givens rotations. The complexity of doing so is O(k2) [��, ��]. In
summary, this yields the GMRES Algorithm �.�, which produces a
solution xk ⇤ x0 + Qk yk at each iteration of the Arnoldi method �.�. In

� Iterative solvers ��

procedure GMRES(A, b, x0)
Set r0 ⇤ b � Ax0, �0 ⇤ kr0k2, q1 ⇤ r0/�0, Q1 ⇤ q1
for j ⇤ 1, 2, . . . , k do

Compute w ⇤ Aq j
Compute h j ⇤ Q

⇤
j w

Compute q̃ j+1 ⇤ w �Q j h j
Set hj+1, j ⇤ kq̃ j+1k2
Set q j+1 ⇤ q̃ j+1/hj+1, j
Append Q j+1 ⇤ [Q j , q j+1]
Compute the least-squares solution y j ⇤ �0(H̃ ⇤j H̃ j)�1

H̃
⇤
j e1

Compute the error � j ⇤ kr j k2 ⇤ k�0e1 � H̃k y j k2
Set x j ⇤ x0 + Q j y j

end for
return xk

end procedure
Algorithm �.�: GMRES algorithm. Com-
putes an approximate solution xk ⇤ x0 +
Qk yk to the linear system Ax ⇤ b.

practice, we stop the iteration once the error satisfies kr j k2 ⇤ � j ✏�0,
where ✏ is a user-specified tolerance. One issue with this most straight-
forward algorithm is that the storage requirement for Qk gradually
increases with increasing k. A simple solution to this is to restart �.� after
k iterations, keeping the maximum k low. This is referred to as restarted
GMRES.

�.� Convergence of GMRES

In the following, we will show how GMRES is fundamentally linked to
a polynomial approximation problem. We consider the k-th iterate of
GMRES xk , which we can write as

xk ⇤ x0 + Qk yk ⇤ x0 + qk(A)r0 , (�.��)

where qk is a polynomial of order k � 1, with coefficients c0 , c1 , . . . , ck�1.
The coefficients ck ⇤ [c0 , c1 , . . . , ck�1]| can be obtained from the GMRES
iterate by

ck ⇤ K
�1
k Qk yk . (�.��)

Kk holds the natural basis vectors of the Krylov subspace Kk(A, r0)

Kk ⇤
⇥
r0 ,Ar0 , . . . ,A

k�1
r0

⇤
. (�.��)

The residual at the k-th iteration can then be rewritten as

rk ⇤ b � Axk ⇤ b � Ax0 � Aqk(A)r0

⇤ (I � Aqk(A))r0 ⇤ pk(A)r0 , (�.��)

where pk ⇤ 1 � zqk(z) is a polynomial of order k. It is easy to verify
that polynomials of this form verify the property pk(0) ⇤ 1. GMRES
minimizes the residual rk , by choosing the coefficients of pk . This means
that GMRES is equivalent to the following polynomial approximation
problem:

� Iterative solvers ��

Problem �.�.� (GMRES polynomial approximation problem) Find a
polynomial pk 2 Pk of order k with pk(0) ⇤ 1, such that

kpk(A)r0k2 (�.��)

is minimized.

As Pk ✓ Pk+1, it is easy to deduce that the residuals are monotonous
and satisfy rk+1 rk . Moreover, in the limit of k ! n, we have rn ⇤ 0
as there are enough terms in Pn to interpolate all eigenvalues of the
spectrum. This is, unless GMRES breaks down due to a singular A. This
is of course irrelevant for all practical purposes, as we are interested in
solving the system (�.��) in k ⌧ n iterations.

As a consequence, we find that unless r0 has special properties due to b,
convergence is determined by

krk k2
kr0k2

 inf
pk2Pk
pk (0)⇤1

kpk(A)k2. (�.��)

The key question now becomes what kind of properties A needs to have
to ensure fast convergence of the residuals.

Theorem �.�.� Let A be diagonalizable, such that V
�1

AV ⇤ ⇤, with some
nonsingular matrix V and a diagonal matrix ⇤ ⇤ diag(�1 , �2 , . . . , �n).
Let rk denote the residual after k iterations of GMRES with the starting
vector x0. Then

krk k
kr0k

 (V) inf
pk2Pk
pk (0)⇤1

sup
z2{�1 ,...,�n }

��pk(z)
��. (�.��)

Proof. As A is diagonalizable, we can write

kpk(A)k2 kV k2kpk(⇤)k2kV�1k2 ⇤ (V) sup
z2{�1 ,...,�n }

��pk(z)
��, (�.��)

where (V) is the spectral condition number (�.�). Combining this with
(�.��) yields the desired result.

This implies that for a given matrix A, we can expect GMRES to converge
quickly if the condition number (V) is small, i.e. the matrix is close to
normal, or if a properly normalized degree k polynomials can be found,
whose size decays quickly on the spectrum of A. Figure �.� shows the
spectra of two randomly generated matrices of order n ⇤ 200, A1 and A2.
The spectrum of A1 is drawn from a random Gaussian centered around
0, while the spectrum of A2 is drawn from a Gaussian centered around
5. We see that GMRES shows much faster convergence for A2, as we
would expect from Theorem �.�.�. For A1 on the other hand, the residual
stays more or less of the same magnitude until the final iteration k ⇤ 200,
at which point it converges in one step. This is caused by the spectral
properties of A1 as both matrices have the same (V).

� Iterative solvers ��

�4 �2 0 2 4

�4

�2

0

2

4

Re(�i)

Im
(�

i)

0 20 40 60 80 10010�9

10�5

10�1

GMRES iteration

re
la

tiv
e

re
sid

ua
l

A1 A2

Figure �.�: Influence of the spectrum on
the convergence rate of GMRES. The fig-
ure on the left shows the spectra of two
randomly generated matrices A1 and A2,
whose eigenvalues are drawn from Gaus-
sian distribution centered at 0 and 5, re-
spectively. The matrices are then gener-
ated by multiplying them with a randomly
generated, unitary transformation V . The
figure on the right shows the relative resid-
ual krk k2/kr0k2 after each iteration for
both matrices.

�.� Preconditioning

What if we would like to use GMRES but A does not have the properties
described in Section �.�? This problem is addressed by introducing
preconditioning. Given a linear system (�.��), let us imagine that we can
compute an invertible n ⇥ n matrix P, or its inverse P

�1, such that we
can apply it efficiently either to a vector or A. Then, if P

�1
A has favorable

properties, we can apply GMRES to the preconditioned linear system

P
�1

Ax ⇤ P
�1

b. (�.��)

This system is often called the left-preconditioned system, as P
�1 is

applied from the left. We can also apply our preconditioner from the
right, which yields the right-preconditioned system

AP
�1

y ⇤ b (�.��a)

x ⇤ P
�1

y. (�.��b)

It is worth noting that x ⇤ P
�1

y comes at virtually no cost as we require
P
�1 to be applicable at low cost in the first place.

The obvious question is: what is a useful preconditioner? Two extreme
cases come to mind: P ⇤ I and P ⇤ A. In the former case, applying P

�1

is very easy but we have not improved the problem. In the latter case,
applying P

�1 is as hard as the original problem and we have therefore
solved the original problem in one iteration. Useful preconditioner lie
somewhere in between these two extreme cases. It seems only natural
then, that many preconditioners are problem-specific and rely on a priori
information.

Let us consider one such problem and give an example of a problem-
specific preconditioner. We seek to solve the Helmholtz problem (�.�)
using a finite element approximation and GMRES. To this end, we
discretize the Helmholtz problem on⌦ ⇤ [�1, 1]2 using a finite element
discretization of polynomial order p ⇤ 1 and mesh width h ⇤ 1/50. This
yields a linear system Ax ⇤ b of size 2401 with the problem matrix

A ⇤ S � 2
M ,

where S, M are the stiffness- and mass-matrices respectively and the
wavenumber. Figure �.� depicts a fraction of the spectrum of A for the

� Iterative solvers ��

wavenumbers ⇤ 12.5 and ⇤ 25. In both cases, we obtain poor GMRES
convergence, caused by the indefinite spectrum. Following [��, ��], we
now use the shifted Laplacian preconditioner

P ⇤ S � 2(�1 + �2i)M , (�.��)

with (�1 , �2) ⇤ (1, 0.5), to precondition our problem. In contrast to the
original matrix, we observe that the spectrum of the preconditioned
matrix AP

�1 is nicely clustered on a circle around 0.5+0i. Unsurprisingly
GMRES fares much better on the preconditioned system, as can be seen
on the right figure. Effectively, the shifted Laplacian approach computes

0 0.5 1

�0.4

�0.2

0

0.2

0.4

Re(�i)

Im
(�

i)

0 20 40 60 80 10010�9

10�5

10�1

GMRES iteration

re
la

tiv
e

re
sid

ua
l

A, ⇤ 12.5 A, ⇤ 25 AP�1 , ⇤ 12.5 AP�1 , ⇤ 25

Figure �.�: Influence on the spectrum if
the shifted Laplacian technique is used
to precondition the Helmholtz problem.
The figure on the left shows the spectra of
A and AP

�1 respectively. The spectrum
of ⇤ 12.5 is covered by the spectrum
of ⇤ 25, however it shows the same
behavior.

a solution to the shifted Helmholtz equation

�r2u � 2(�1 � �2i)u ⇤ f , (�.��)

where the introduction of a complex component corresponds to the
introduction of a damping term ut to the original wave equation (�.�). If
the complex shift is not too large, we can expect the method to yield a
result that is still useful for preconditioning, yet easy to compute using
an iterative solver. We have not discussed how P

�1 can be applied
efficiently. For a detailed treatment, we refer the reader to [��, ��].

The following list offers a short (and incomplete) overview of popular
preconditioning techniques for iterative solvers of linear systems:

Diagonal/Jacobi preconditioner A very simple preconditioning tech-
nique is to simply take the diagonal as a preconditioner: P ⇤

diag(A). More generally, one may choose c 2 Cn and P ⇤ diag(c),
in the attempt to minimize (P�1

A).
Incomplete LU factorization Another popular choice is the incomplete

LU decomposition. For sparse matrices, we can compute an in-
complete LU factorization A ⇡ LU by simply disregarding fill-in
and only compute entries which lie in the sparsity pattern of the
original matrix. Other variants use a less aggressive approach,
where entries are dropped if their value is below a user-specified
threshold ✏.

Gauss-Seidel/Successive over-relaxation This preconditioner is based
on the Gauss-Seidel method, which is another iterative method for
solving linear systems. The idea is to decompose the matrix into
its upper- and lower-triangular parts A ⇤ L + U . The resulting
equation x ⇤ L

�1(b � U x) can be understood as a fixed-point
equation and is solved via fixed-point iteration.

� Iterative solvers ��

Multigrid solvers Perhaps the most prominent member in this group
are multigrid methods, which exploit the hierarchical nature of
problems, such as problems arising from PDEs. The core idea of
these methods is to accelerate the convergence of a cheap solver
which solves the solution on a grid with a solution computed on a
coarser grid [��, ��, ��]. One can recursively apply the multigrid
method on this coarser grid until the problem becomes cheap
enough to be solved directly. As a consequence, multigrid methods
can be used both as a solver and as a preconditioner. Typically, we
distinguish between algebraic and geometric multigrid methods,
where the former assumes no prior information and can therefore
be applied without the prior knowledge of a multilevel hierarchy
[��].

Hierarchical matrices �
�.� Approximate separability . . ��

Taylor expansions ��
Multipole expansions ��

�.� Block cluster trees ��
�.� Hierarchical matrices ��
�.� Nested bases ��

This chapter introduces the notion of hierarchical matrices. Hierarchical
matrices can be regarded as matrix representations of integral operators
such as

G(u) ⇤
π
⌦

g(x , y)u(y)dy (�.�)

where ⌦ ⇢ Rd is a domain of interest embedded in a d-dimensional
space and

g : Rd ⇥Rd ! R (�.�)

is its kernel function, which may be singular along the diagonal x ⇤ y.
Notable examples of kernel functions are fundamental solutions or kernel
functions arising in Gaussian processes. These kernel functions are often
non-local and their approximation using a Galerkin method

Gi j ⇤ h'i , G' ji 'i , ' j 2 Vh (�.�)

can therefore be expected to result in a dense matrix. However, if we
consider g on X⇥Y, where X ⇢ Rd and Y ⇢ Rd are sufficiently separated
disjoint domains, g may admit a degenerate approximation of the form

g(x , y) ⇡
k�1X
l⇤0

pl(x)ql(y) (�.�)

for x 2 X and y 2 Y. As a consequence, some blocks in G may admit a
rank-k approximation, which we would like to exploit.

�.� Approximate separability

We are concerned with the approximation of kernel functions using
low-rank matrices. Our introduction borrows heavily from [��], which
provides a detailed introduction to the topic. As we limit our analysis
to the most important details, we point the reader to [��, ��] for a more
rigorous and detailed treatment of the subject.

Definition �.�.� (separable expression) Let gk : Rd ⇥ Rd ! R and
X,Y ⇢ Rd . We call gk a separable expression in X ⇥ Y iff there exist
functions pl , ql , such that

gk(x , y) ⇤
kX

l⇤1
pl(x)ql(y) for x 2 X, y 2 Y. (�.�)

The number k is called the separation rank of gk .

We are interested in separable approximations to integral operators
of the form (�.�). To this end, we introduce the notion of approximate
separability.

� Hierarchical matrices ��

�: It is worth noting that the expansion
terms pl(x), ql(y) may implicitly depend
on the concrete value chosen for k. If they
do not however, convergence of g(x , y)�
gk (x , y) is equivalent to the convergence
of the infinite series

g(x , y) ⇤
1X

l⇤1
pl(x)ql(y).

�: We use multiindex notation to de-
note multidimensional powers, deriva-
tives, etc. For instance, the notation x

↵

with the multiindex ↵ 2 Nd
0 refers to

x
↵

⇤ x↵1
1 x↵2

2 . . . x
↵d
d , where each com-

ponent xi is mapped to its ↵i -th power
with the corresponding element in ↵.
Similar rules apply for the multidimen-
sional derivative @↵

x
⇤ @
↵1
x1
@
↵2
x2
. . . @

↵d
xd

, fac-
torial↵! ⇤ ↵1!↵2! . . . ↵d !, etc. The absolute
value of a multiindex denotes the sum of
all entries: |↵ | ⇤ ↵1 + ↵2 + · · · + ↵d .

Definition �.�.� (separable expansion) Let gk be a separable expression
in X⇥Y. For a small positive number ✏ > 0, we call gk a separable expansion
of g to accuracy ✏, if it satisfies

g(x , y) ⇤ gk(x , y) + Rk(x , y) for x 2 X, y 2 Y, (�.�)

with
|Rk | ✏.

Clearly, we would like Rk to vanish quickly as we increase k, i.e. Rk ! 0
as k ! 1. � There are various ways of finding separable expansions.
Popular approaches are Taylor expansions, multipole expansion and
interpolation [��, ��].

Separability with Taylor expansions

A general approach for finiding a separable expansion is to use a Taylor
expansion of the kernel in one of its two variables. Let g 2 Cm(X ⇥ Y).
We choose a point x0 2 X and formulate the Taylor expansion

g(x , y) ⇤
X

↵2Nd
0 ,|↵ |m

(x � x0)↵
1
↵!
@↵

x
g(x0 , y) + Rk(x , y) (�.�)

in x, where we sum over all multiindices ↵ 2 Nd
0 , which are below a

certain order |↵ | m. � Here, the separation rank

k(m , d) ⇤ (m + d)(m + d � 1) . . . (m + 1)
d!

⇤

✓
m + d

d

◆
(�.�)

is the number of terms in the Taylor approximation (�.�) and therefore a
function of m and the spatial dimension d. We note that we might also
have chosen to expand g(x , y) in y with respect to some point y0 2 Y.

Remark �.�.� Many kernels of interest have the form g(x , y) ⇤ G(r),
where r is the radius vector x � y. In these cases, the expansion can
be performed in r and we obtain a separable expression (�.�) with
polynomial coefficients pl(x) and ql(y).

In the following, we discuss under which assumptions we can expect
the remainder term in (�.�) to vanish exponentially. To understand this
requires some additional properties with respect to the kernel g(·, ·):
To bound the remainder term Rk , we introduce the notion of asymptotical
smoothness:

Definition �.�.� (asymptotically smooth kernels) Let g : Rd⇥Rd ! R

and X,Y ✓ Rd , such that g is defined and arbitrarily often differentiable if
x 2 X, y 2 Y and x , y. We call g asymptotically smooth in X ⇥ Y if

���@↵x @�y g(x , y)
��� C(↵ + �)! c |↵ |+|� |0 kx � yk�|↵ |�|� |�� (�.�)

for x 2 X, y 2 Y, x , y, multiindices satisfying ↵, � 2 Nd
0 , ↵ + � , 0

and some constants C, c0 , � 2 R>0.

� Hierarchical matrices ��

�: A more detailed analysis with sharper
bounds for |Rk | can be found in [��].

In particular, if we consider derivatives only in x, Definition �.�.� yields
��@↵

x
g(x , y)

�� C↵! c |↵ |0 kx � yk�|↵ |�� . (�.��)

Due to the asymptotical smoothness of g, we can write the remainder
term in (�.�) as

Rk ⇤

1X
|↵ |�m+1

(x � x0)↵
↵!

@↵
x

g(x0 , y). (�.��)

Using (�.��) and
P

|↵ |⇤l |(x � x0)↵ | ⇤ O(| |x � x0 | | l), we have

|Rk | C
X

|↵ |�m+1
c |↵ |0

|(x � x0)↵ |
↵!

↵!kx0 � yk�|↵ |��

⇤
C

kx0 � yk�
X

|↵ |�m+1

c |↵ |0

kx0 � yk |↵ |
|(x � x0)↵ |

⇤
C

kx0 � yk�
1X

l⇤m+1

✓
c0

kx0 � yk

◆ l X
|↵ |⇤l

|(x � x0)↵ |

 C
kx0 � yk�

1X
l⇤m+1

✓
�kx � x0k
kx0 � yk

◆ l

 C̃
1X

l⇤m+1
#l C̃

#m

1 � # , (�.��)

where we have introduced the new constants �, C̃ 2 R>0, which depend
on C, �, m, x0. Therefore, the remainder term Rk vanishes exponentially
� if # < 1, which is given by

⇤
�kx � x0k
kx0 � yk

�max
x2X kx � x0k
kx0 � yk .

Consequently, the condition

diam(X) ⌘ dist(X,Y) (�.��)

implies # < ⌘�. In combination with previous assumptions ⌘� < 1 is
sufficient to guarantee convergence of the separable approximation. A
similar condition can be formulated for y for cases, in which we choose
to expand g(·, ·) in y:

diam(Y) ⌘ dist(X,Y). (�.��)

Definition �.�.� (⌘-admissibility) Let X and Y be d-dimensional subdo-
mains X,Y ⇢ Rd and ⌘ 2 R>0. We call the pair (X,Y) ⌘-admissible if
(�.��) or (�.��) (or both) are satisfied.

This admissibility condition is depicted in Figure �.�. A smaller ⌘ means
that g will be better-suited for a separable expansion, and therefore an
approximation with the matrix formats that we will introduce in this
chapter.

� Hierarchical matrices ��

X

diam(X)

Y

diam(Y)

dist(X,Y)

Figure �.�: Illustration of the admissibility
condition.

This brings us to the final theorem of this section, which summarizes the
previous statements

Theorem �.�.� Let g : Rd ⇥Rd ! R be an asymptotically smooth kernel
in X,Y ✓ Rd . Moreover, let X and Y be ⌘-admissible, where ⌘ < 1/� with
the constant � 2 R>0 from (�.��). Then, g admits a separable approximation
gk of separation rank k ⇤ k(m , d) in X⇥Y, with an error term that vanishes
exponentially, according to (�.��).

Proof. The proof is given by preceding calculations.

Thus, we have identified sufficient conditions under which we may find
separable approximations of the form (�.�). It is important to note that
those are not necessary conditions as we may have chosen another form
of the separable expression, for instance via interpolation or multipole
expansion [��, ��].

In the following, we state an independent result, which demontrates
a sufficient separability condition for the Green’s function of the two-
dimensional Laplacian in unbounded domains.

Example �.�.� (Green’s function of the two-dimensional Laplacian)
The Green’s function of the Laplacian in an unbounded, two-dimensional
domain is given by ln kr k/2⇡. Here r ⇤ x � y ⇤ (r1 , r2)| denotes the
radius vector. We ignore the constant and set G(r) ⇤ ln kr k. We then
compute its ↵-th derivative, where ↵ ⇤ (↵1 , ↵2) 2 N2

0. After some
calculations, we obtain

@↵
r

G(r) ⇤ � (↵1 + ↵2 � 1)!
(r2

1 + r2
2)↵1+↵2

✓
(�1)↵1+↵2(r1 � ir2)↵1(ir1 + r2)↵2

+ (i)↵1+↵2(ir1 � r2)↵1(r1 + ir2)↵2

◆

and consequently,

|@↵
r

G(r)| (↵1 + ↵2 � 1)!
kr k |↵ |

.

Thus, we can bound the remainder term as

|Rk |
X

|↵ |�m+1

|(r � r0)↵ |
↵!

|@↵
r

G(r0)|

X

|↵ |�m+1

|(r � r0)↵ |
↵1 + ↵2

✓
↵1 + ↵2
↵2

◆
1

kr0k |↵ |

� Hierarchical matrices ��

⇤

1X
l⇤m+1

1
lkr0k l

X
|↵ |⇤l

✓
↵1 + ↵2
↵2

◆
|(r � r0)↵ |

⇤

1X
l⇤m+1

1
l
kr � r0k l1
kr0k l2

.

We insert r ⇤ x � y and r0 ⇤ x0 � y0, where x0 and y0 are suitably
chosen expansion centers for both x and y. To ensure exponential
convergence, we must bound the term

⇤
k(x � x0) � (y � y0)k1

kx0 � y0k2

p

2
k(x � x0) � (y � y0)k2

kx0 � y0k2

p

2
k(x � x0)k + k(y � y0)k2

kx0 � y0k2

p

2
diam(X) + diam(Y)

dist(X,Y)

by �. A valid admissibility condition there would be the ⌘-admissibility
condition with ⌘ ⇤ 2

p
2. In many cases however, this condition can be

much relaxed, as we can choose x0 and y0.

Separability with multipole expansions

So far, we have motivated the use of separable approximations using
Taylor expansions of asymptotically smooth kernel functions. This ap-
proach is fairly general but seldom practical. An alternative expansion
is the multipole expansion, which is particularly useful in the context of
physically motivated kernel functions [��, ��, ��].

Most Green’s functions of practical relevance are related to the potential
of a single unit charge. The electrostatic field of a unit point charge in
three dimensions is given by

g(x , y) ⇤ 1
kx � yk2

, (�.��)

which is the Green’s function of the corresponding Laplace equation in
R3. We imagine that n charges q j are located at source points y j within
the subdomain Y centered at y0. The resulting potential u at the target
location x is then given by

u(x) ⇤
nX

j⇤1
q j g(x , y j). (�.��)

A well-known identity for the electrostatic potential (�.��) is its relation
to the generating function of the Legendre polynomials Pk [��, pp. ���].
In particular, we have

1
kx � yk2

⇤

1X
l⇤0

Pl(cos #(y , x)) kxk
l
2

kyk l+1
2
, (�.��)

where kyk2 > kxk2 and #(y , x) is the angle between x and y. We remark
that this expansion in itself is not yet a separable approximation of (�.��)
as the angle depends on both x and y. In two dimensions, we can use

� Hierarchical matrices ��

x0 y0

y0 � x0

X

Y

#

Figure �.�: Illustration of the situation
in the multipole expansion. The source
points y j are located in the area Y, cen-
tered at y0. Similarly, target locations xi
are contained in the subdomain X.

the addition theorem for spherical harmonics [��]

Pl(cos(#1 + #2)) ⇤
lX

m⇤0
Pm

l (cos(#1))Pm
l (cos(#2)),

where Pm
k denote the associated Legendre polynomials [��]. In three

dimensions, a similar addition theorem for angles on the sphere yields
the spherical harmonics for the multipole expansion (�.��). Inserting the
addition theorem gives us

1
kx � yk2

⇤

1X
l⇤0

Pl(cos
�
#(x , y0) + #(y0 , y)

�) ky � y0k l2
kx � y0k l+1

2
,

⇤

1X
l⇤0

lX
m⇤0

Pm
l (cos #(x , y0))Pm

l (cos #(y0 , y))
ky � y0k l2
kx � y0k l+1

2
, (�.��)

which is a separable expansion in x and y. Here we have introduced the
point y0 as the center for our expansion, as illustrated in Figure �.�. To
make a statement regarding the quality of a truncated expansion of (�.��),
we need to develop error bounds. We point the reader to the original
introduction of the fast multipole method [��] for an extended discussion
on the matter.

Let us imagine that we want to evaluate (�.��) at m target points xi
located in the subdomain X centered at x0. This is clearly an O(mn)
operation. Substituting (�.��) into (�.��) yields

u(xi) ⇤
nX

j⇤1
q j

1X
l⇤0

lX
m⇤0

Pm
l (cos #(x j , y0))Pm

l (cos #(y0 , y))
ky � y0k l2
kx � y0k l+1

2

⇡
1X

l⇤0

1
kxi � y0k l+1

2

nX
j⇤1

q j

lX
m⇤0

Pm
l (cos #(x0 , y0))Pm

l (cos #(y0 , y j))ky j � y0k l2
| {z }

⇤Ql j

⇡
kX

l⇤0

1
kxi � y0k l+1

2

nX
j⇤1

q jQl j . (�.��)

We have used the fact that X and Y are well-separated subdomains, which
allowed us to replace the angle #(x j , y0) with #(x0 , y0). We then proceed
by computing the so-called multipole moments Ql j which contribute
to the approximation of the potential centered at y0. In the final step
we have chosen a separation rank k at which we truncate the multipole
expansion. The final result is a separable approximation of rank k, which
reduces the computational cost to O(k(m+n)) operations. Evidently, this
separation rank should be chosen with respect to some error tolerance ✏.
We refer the reader again to [��] for a rigorous mathematical treatment
of the subject.

The multipole expansion (�.��) illustrates how separable approximations
can be obtained in practice. In contrast to Taylor expansions, multipole
expansions only span harmonic functions. An order k multipole expan-
sion in three dimensions as discussed here, will have only O(k2) terms,
whereas the corresponding Taylor expansion will have O(k3) terms. This
makes multipole expansions superior to Taylor expansions and lower
truncation errors can be achieved with the same number of terms. The

� Hierarchical matrices ��

hierarchically structured matrices that we present later in this chapter
can be regarded as matrix counterparts to multipole expansions (and the
fast multipole method in particular [��]).

The following example presents an estimation of the separation rank
for multipole expansions of the Helmholtz problem in two and three
dimensions based on results derived in [��].

Example �.�.� (Expansion errors for the Green’s function of the
Helmholtz problem in two dimensions) We consider the Green’s
function

g(x , y) ⇤ i
4

H(1)
0 (kx � yk) (�.��)

of the Helmholtz problem (�.�) on the unbounded R2 with radiating
boundary condition. H(1)

↵ (x) denotes the Hankel function of the first
kind, defined as H(1)

↵ (x) ⇤ J↵(x) + iY↵(x), where J↵(x) and Y↵(x) are
the Bessel functions of the first and second kind, respectively. As
in the computations before, we aim to separate the points x and y

into well-separated subdomains. Suppose that p ⇤ (x0 � y0) and
q ⇤ (x0 � y0 � x + y), where x0 and y0. At the core of the multipole
methods lies the expansion of the Green’s function into an infinite
series. We use Graf’s addition theorem [��]

H(1)
0 (kx � yk) ⇤

1X
l⇤�1

H(1)
l (p)Jl(q) exp

⇣
il(#p � #q)

⌘
, (�.��)

where we have introduced polar coordinates (p , #p) and (q , #q) to
specify the vectors p and q. Truncating this expansion at k terms yields
the remainder term

|Rk | .
1X

l⇤k+1
|H(1)

l (p)Jl(q)| max
{p�pmin ,qqmax}

1X
l⇤k+1

|H(1)
l (p)Jl(q)|. (�.��)

As x and y are usually contained in well-separated clusters X and
Y, it makes sense to bound p � pmin ⇤ dist(X,Y) and q qmax ⇤

(diam X + diam Y).
Amini and Profit [��] derive a theoretical error bounds for (�.��) and
an algorithm to compute them. The proper separation rank for a given
tolerance ✏ > 0 can then be determined by computing the error bound
(�.��) until |Rk | < ✏ is met. As in the prior analysis, we assume that
the satisfy an ⌘-admissibility condition and fix q ⇤ ⌘p. For ⌘ ⇤ 0.5
and a fixed tolerance of 2�20, Amini and Profit report the separation
rank k to behave roughly as

k ⇠ q + 5 log
�
q + ⇡

�
, (�.��)

which grows linearly with the wave number for large [��].

�.� Block cluster trees

For a general matrix A 2 Rm⇥n , consider the row index set I ⇤

{1, 2, . . . ,m} and column index set J ⇤ {1, 2, . . . , n}. In the preced-
ing section, we established that separable approximations may be used in

� Hierarchical matrices ��

�: The notation I l
i is slightly redundand as

we do not need to specify the level l in the
tree once we have specified its position
i in the tree. For the sake of clarity, we
will drop the superscript l whenever the
circumstances allow.
�: With a slight abuse of notation, we shall
interchangably refer to nodes in TI either
by their index i or by the concrete index
set I l

i .

I ⇤ {1, 2, . . . , 12}

{1, 2, . . . , 6}

{1, 2, 3} {4, 5, 6}

{7, 8, . . . , 12}

{7, 8, 9} {10, 11, 12}
Figure �.�: Example of a cluster tree gen-
erated by bisecting I ⇤ {1, 2, . . . , 12}.

(a) L ⇤ 2

(b) L ⇤ 3

(c) L ⇤ 4

Figure �.�: Block cluster partitioning gen-
erated from two binary cluster trees and
the admissibility condition |i� j | > 1. This
admissibility can for instance be derived
from the ⌘-admissibility of one dimen-
sional meshes. In admissible blocks are
colored in red, admissible ones in blue.

well-separated domains that satisfy some form of admissibility condition.
Therefore, if A is similar to G we can expect that some blocks of A admit
rank-k approximations.

To find such partitions, we start by hierarchically partitioning the index
sets I and J. Thus, we introduce the notion of cluster trees:

Definition �.�.� (cluster tree) Let I ⇤ {1, 2, . . . ,m} be an index set and
let TI be a tree of maximal depth L, where each of its nodes I l

i 2 T is a subset
of I. The superindex l in I l

i denotes the level, starting from the top-level l ⇤ 1,
and the subscript i enumerates the node within the tree in post-order. We call
TI a cluster tree iff

I the root node is the entire index set I,
I nodes at each level l are disjoint: 8i , j : I l

i \ I l
j ⇤ ;,

I every node I l
i with children nodes children(i) is the disjoint union of

all its children I l
i ⇤

S
c2children(i) I l+1

c ,
I each index set I l

i is a contigious range of integers, i.e. indices appear in
incremental order.

The second to last condition ensures that the union of all index sets on a
given level l is a valid partitioning of the entire index set I (assuming
that TI is a balanced tree). The last requirement of having contigious
index sets is an optional one as it can be achieved by simply reordering
the underlying matrix accordingly. As such, there is no loss of generality
and we will assume that this is generally true for the cluster trees that
we consider. � �

A straight-forward way of generating cluster trees is bisection. Figure
�.� depicts a cluster tree of depth 3 of the index set I ⇤ {1, 2, . . . , 12}.
Such hierarchical partitions can also be constructed by using the under-
lying geometry. This may lead to better results but it is a much more
involved process as the geometry has to be taken into account. More
details can be found in [��, ��, ��, ��].

We are interested in hierarchically partitioning the matrix A. This is
achieved with block cluster trees:

Definition �.�.� (block cluster tree) Let I ⇤ {1, 2, . . . ,m} and J ⇤

{1, 2, . . . , n} be index sets and let TI⇥J be a tree. We call TI⇥J a block cluster
tree iff:

I I ⇥ J is the root of TI⇥J ,
I any two distinct nodes Bl

i , B
l
j 2 TI⇥J , i , j that share the same level l

are disjoint: Bl
i \ Bl

j ⇤ ;,
I every node Bl

i with children nodes children(i) is the disjoint union of
its children: Bl

i ⇤
S

c2children(i) Bl+1
c ,

I for each block Bl
i , there exist contigious index sets I l

i and J l
i , such that

Bl
i can be expressed as their cartesian product: Bl

i ⇤ I l
i ⇥ J l

i .

Evidently, block cluster trees share many of the properties of cluster trees.
The last property ensures that we are only considering matrix blocks and
not random entries.

� Hierarchical matrices ��

�: In principle, we may construct more
general hierarchical partitionings of I ⇥ J,
which may not necessarily be generated
by cluster trees TI and TJ . However, to
the best of our knowledge, such matrix
partitionings are not of practical interest
and for the sake of clarity, we chose to
omit them.

For practical applications, we are particularly interested in block cluster
trees that are constructed from cluster trees of the row and column indices
TI and TJ .

� We demonstrate the construction of a block cluster tree
from the cluster trees TI and TJ , which we assume to have identical tree
structures. Moreover, we require a suitable admissibility condition, which
tells us whether the block A(I l

i , J
l
j) admits a low-rank approximation.

Clearly, this admissibility condition is closely related to the admissibility
condition (�.��), (�.��).

Starting from the root node, we construct the block cluster tree recursively.
We proceed as follows: If the current block I l

i ⇥ J l
j meets the admissibility

condition, we stop the recursion and return the current block. If it does
not, we subdivide the current block into {I l+1

c ⇥ J l+1
d : c 2 children(i), d 2

children(j)} and call the routine recursively on these blocks. The subtrees
that are returned are rooted at the current node and the resulting tree is
returned. Algorithm �.� summarizes the procedure. Such a construction

procedure ����� ������� ����(i, j, TI , TJ)
Get row and column clusters I l

i 2 TI and J l
j 2 TJ

Create tree node TB with B ⇤ I l
i ⇥ J l

j at the root
if I l

i ⇥ J l
j is not admissible then

for all c 2 children(i), d 2 children(j) do
Append B���� ������� ����(c , d , TI , TJ) to TB

end for
end if
return TB

end procedure
Algorithm �.�: Construct a block cluster
tree from TI and TJ

preserves the overall depth of the cluster tree. In practice, we do not have
to store the block cluster tree TI⇥J as its structure is fully described by TI ,
TJ as well as the admissibility condition �(I l

i , J
l
j).

Example �.�.� Discrete admissibility condition for the one-dimensional
discretization of the one-dimensional Green’s function.

|i � j | > 1 (�.��)

Figure �.� shows the block cluster tree that is derived using this
admissibility condition.

�.� Hierarchical matrices

This finally brings us to hierarchical matrices, which is the main subject
of this chapter:

Definition �.�.� (H-matrices) Let A 2 Rm⇥n be a matrix and TI⇥J a block
cluster tree on I ⇤ {1, 2, . . . ,m}, J ⇤ {1, 2, . . . , n}. Moreover, let � be a
suitable admissibility condition and k 2 N0. Then, we call A a hierarchical
matrix (in short H-matrix) of maximum rank k, iff

rank A(Bl
i) k

� Hierarchical matrices ��

�: Another prominent example of rank-
structured matrices are block low-rank
(BLR) matrices, which are partitioned ma-
trices, with the important difference that
the partitionings are not hierarchical [��].

(a) L ⇤ 2

(b) L ⇤ 3

(c) L ⇤ 4

Figure �.�: HODLR partitioning gener-
ated from two binary cluster trees and the
strong admissibility condition |i � j | > 0.
Inadmissible blocks are colored in red,
admissible ones in blue.

is satisfied for every admissible block Bl
i 2 TI⇥J : �(Bl

i).

The obvious advantage of H-matrices is that they admit accelerated
arithmetic and reduced storage requirements compared to dense matrices,
due to the low-rank property of admissible blocks. � As such, they are
often referred to as rank-structured matrices. Similar to sparse matrices,
they exploit structure and data sparsity to improve storage and operation
complexity. H-matrices provide a great deal of flexibility and represent
the most general format among hierarchically rank-structured matrix
formats [��, ��, ��].

While H-matrices offer flexibility, this comes at the cost of performance
and increased difficulty for practical implementation. Without going
into much detail on H-matrices, we shall move on to an import sub-
set of H-matrices, namely hierarchically off-diagonal low-rank (HODLR)
matrices. As the name implies, these are hierarchical matrices, where
the partitioning has been constructed from binary cluster trees with the
simple admissibility condition i , j and i , j are sibling nodes. Such a
hierarchical partitioning is illustrated in Figure �.� and the format is
formalized in Definition �.�.�

Definition �.�.� (HODLR matrix) Let A 2 Rm⇥n be a matrix and TI ,
TJ binary cluster trees with equal tree structures on I ⇤ {1, 2, . . . ,m},
J ⇤ {1, 2, . . . , n}. Also, let k 2 N0 be a positive integer. Then, we call A

a hierarchically off-diagonal low-rank matrix (in short HODLR matrix) of
off-diagonal rank k, iff

rank A(I l
i , J

l
j) k

hold for all disting sibling nodes I l
i 2 TI , J l

j 2 TJ , with parent(i) ⇤ parent(j)
and i , j. The minimum k for which this is true is called the HODLR rank
of A (with respect to TI , TJ).

Consequently, HODLR matrices allow a simple recursive representation,
where diagonal matrix blocks can be represented as

A(I l
i , J

l
i) ⇤ A

(l)
ii ⇤

"
A

(l+1)
c1 ,c1

A
(l+1)
c1 ,c2

A
(l+1)
c2 ,c1

A
(l+1)
c2 ,c2

#
, (�.��)

and c1 , c2 are the two children nodes of i in both TI and TJ . The diagonal
blocks are again HODLR matrices, unless they are smaller than some
minimum block size, at which point we simply stop the recursion and
store a dense matrix. We call

� ⇤ max
I l
i 2leaves(TI)

|I l
i | (�.��)

the block size of the partitioning. On the other hand, off-diagonal blocks
A

(l)
i , j admit a low-rank representation and are stored accordingly:

A
(l)
i , j ⇤ Ũ

(l)
i

�
Ṽ

(l)
j

� ⇤
, (�.��)

where Ũ
(l)
i 2 R

|I l
i |⇥k , Ṽ (l)

j 2 R
| J l

j |⇥k are called its generators.

In a similar fashion to low-rank matrices, we introduce the notion of
approximate HODLR matrices:

� Hierarchical matrices ��

�: Due to this additional hierarchy of the
bases, H-matrices with nested bases are
referred to as H2-matrices in the literature
[��].

Definition �.�.� (approximate HODLR matrix) Let A 2 Rm⇥n , k 2 N0
and ✏ > 0. We call A a matrix of approximate HODLR rank k, iff for a given
block-cluster tree, there exists a HODLR matrix Ã with HODLR rank k,
such that

kA � Ãk ✏ (�.��)

holds for a suitable norm k·k.

Oftentimes it is more practical to control the error locally, in the sense
that

kA(I l
i , J

l
j) � Ã(I l

i , J
l
j)k ✏ (�.��)

holds true for all low-rank blocks in Ã. For a HODLR matrix with L
levels, controlling each block with ✏ results in a total approximation error
that is bounded by

kA � Ãk (2L � 2) ✏.
A more interesting choice is to control the relative error locally, such that

kA(I l
i , J

l
j) � Ã(I l

i , J
l
j)k ✏kA(I l

i , J
l
j)k. (�.��)

If we choose to do so in the Frobenis norm, (�.��) guarantees

kA � ÃkF
p

2L � 2 ✏. (�.��)

�.� Nested bases

Again, let us consider matrices with HODLR block structure. Let i , j be
sibling nodes at level l and let c1 , c2 be the children of i and d1 , d2 the
children of j. Moreover, let Ũ

(l)
i and Ṽ

(l)
j denote the generators of the

off-diagonal blocks. Then, we call the bases nested, if the generators can
be constructed recursively from its children generators

Ũ
(l)
i ⇤

"
Ũ

(l+1)
c1

0
0 Ũ

(l+1)
c2

#
U

(l)
i , (�.��a)

Ṽ
(l)
j ⇤

"
Ṽ

(l+1)
d1

0
0 Ṽ

(l+1)
d2

#
V

(l)
j , (�.��b)

with translation matrices U
(l)
i 2 R

2k⇥k and V
(l)
j 2 R

2k⇥k . � The low-rank
block A(I l

i , J
l
j) can then be factored as

A(I l
i , J

l
j) ⇤ Ũ

(l)
i B̃

(l)
i , j

�
Ṽ

(l)
j

� ⇤
, (�.��)

where we have introduced the block B̃
(l)
i , j 2 R

k⇥k to decouple it from the

bases Ũ
(l)
i and Ṽ

(l)
j In our notation, generators with a ⇠ denote “tall”

matrices, with the leading dimension corresponding to the blocksize
of the low-rank block (�.��). Therefore, to construct the low-rank block
(�.��), we have to first construct generators, that span its row- and column-
space. To do so, we apply the nestedness property (�.��) recursively
until the leaf level is reached. At the leaf level, we set U

(L)
i ⇤ Ũ

(L)
i and

V
(L)
j ⇤ Ṽ

(L)
j .

� Hierarchical matrices ��

�: The structure of hierarchically semi-
separable matrices is related to separable
and semi-separable matrices [��].

(a) HSS block row at level l ⇤ 4

(b) HSS block column at level l ⇤ 3

Figure �.�: Illustration of a HSS block row
and a block column.

HODLR matrices with such an additional hierarchy in their generators
are called hierarchically semi-separable (HSS) matrices. A formal definition
follows later in Definition �.�.�. � The nestedness of generators allows
us to represent the HSS matrix A in a recursive manner. We define

B
(l)
i ⇤

"
0 B̃

(l+1)
c1 ,c2

B̃
(l+1)
c2 ,c1

0

#
,

D
(L)
i ⇤ A(IL

i , J
L
i),

as well as

U
(l)

⇤ diag
�
U

(l)
1 ,U

(l)
2 , . . .

�
, (�.��a)

V
(l)

⇤ diag
�
V

(l)
1 ,V

(l)
2 , . . .

�
, (�.��b)

B
(l)

⇤ diag
�
B
(l)
1 , B

(l)
2 , . . .

�
, (�.��c)

D
(L)

⇤ diag
�
D

(L)
1 ,D

(L)
2 , . . .

�
. (�.��d)

Then A can be expressed via the recursion

A
(0)

⇤ B
(0) , (�.��a)

A
(l)

⇤ U
(l)

A
(l�1) �

V
(l)� ⇤

+ B
(l) for l ⇤ 1, 2, . . . , L � 1 (�.��b)

A
(L)

⇤ U
(L)

A
(L�1) �

V
(L)� ⇤

+ D
(L). (�.��c)

By writing out this recursion, we obtain a telescoping factorization. For a
�-level HSS matrix with balanced cluster trees, this yields

A ⇤ U
(3)

⇣
U

(2)
⇣
U

(1)
B
(0) �

V
(1)� ⇤

+B
(1)

⌘ �
V

(2)� ⇤
+ B

(2)
⌘ �

V
(3)� ⇤

+ D
(3) ,

(�.��)
where the structure of each matrix is illustrated below its symbol. A
matrix A in HSS format is therefore fully defined by specifying its row-
and column-cluster trees TI , TJ , as well as the matrices that appear in
(�.��).

This telescoping factorization reveals an alternative definition of HSS
matrices. We observe in (�.��), that the first row of A�D

(3) is spanned by
U

(3)
1 . Moreover, we see that this holds for all levels A

(l) of the hierarchical
definition (�.��), disregarding the diagonal part. Thus, by requiring that
each HSS block row

A(I l
i , J \ J l

i)
and HSS block column

A(I \ I l
j , J

l
j)

is low-rank, we can ensure that A is a HSS matrix. Figure �.� illustrates
HSS block rows and columns. Consequently, we define:

Definition �.�.� (HSS matrix) Consider a matrix A 2 Rm⇥n with row
indices I, column indices J and corresponding row- and column-cluster trees
TI , TJ , with matching tree structure.

� Hierarchical matrices ��

��: Quasiseparable matrices can be under-
stood as HSS matrices with leaf size 1 and
HSS rank 1 [��]. These matrices include
tridiagonal and semi-separable matrices.

I We select a row partition I l
i 2 TI at level l. Then the block row

A(I l
i , J \ J l

i), which omits the diagonal part is called a HSS block row.
Similarly, we call A(I \ I l

j , J
l
j) a HSS block column.

I We call A a HSS matrix with respect to TI , TJ , if there exists a positive
integer k 2 N0, such that the rank of every HSS block row and block
column is smaller than, or equal to k:

8I l
i 2 TI : rank A(I l

i , J \ J l
i) k , (�.��a)

8J l
j 2 TJ : rank A(I \ I l

j , J
l
j) k. (�.��b)

We call the minimum k for which (�.��) is satisfied, the HSS rank of A.

We remark that the HSS rank as introduced here differs from the HODLR
rank, which only takes the rank of off-diagonal blocks into account. This
definition resembles the quasi-separable rank, which is the maximum rank
of any block which lies strictly in the upper or lower triangular part of
the matrix. �� In practice, we are often more interested in the ranks of
the matrices (�.��), required to represent the matrix. In these cases we
refer to the HODLR rank.

As for HODLR matrices, we are interested in matrices of approximate
HSS rank k:

Definition �.�.� (approximate HSS matrix) Let A 2 Rm⇥n , k 2 N0
and ✏ > 0. We call A a matrix of approximate HSS rank k, iff for a given
block-cluster tree, there exists a HSS matrix Ã with HSS rank k, such that

kA � Ãk ✏ (�.��)

holds for a suitable norm k·k.

It is useful to bound the approximation error by bounding it locally.
For HSS matrices, this is done by controlling the approximation error
for each individual HSS block row and column. Controlling the relative
error means enforcing

kA(I l
i , J \ J l

i) � Ã(I l
i , J \ J l

i)k ✏kA(I l
i , J \ J l

i)k
kA(I \ I l

j , J
l
j) � Ã(I \ I l

j , J
l
j)k ✏kA(I \ I l

j , J
l
j)k

for each block row and clumn. For the Frobenius norm, this results in
the tighter error bound

kA � ÃkF
p

2L�1 ✏ (�.��)

as compared to (�.��).

Tighter error bounds for the spectral norm are reported in [��], however
these bounds require that A and Ã share the same generators. This is the
case if a truncated SVD is used to compute the approximation. In general,
however, it is not the case and it is unclear whether improved error
bounds can be found without making assumptions on the generators [��,
��]. Conversely, it is also possible to show the existence of a HSS rank k
approximant Ã, which satisfies kA� Ãk�

p
2L+1 � 4 ✏ if each HSS block

row and column of A allow a rank-k truncation with an error smaller

� Hierarchical matrices ��

than ✏ [��]. This however, does not guarantee that we have found this
approximant.

Algorithms for hierarchical
matrices �

�.� HODLR arithmetic ��
�.� HSS arithmetic ��

Matrix-vector multiplication ��
ULV factorization and solver ��

�.� HSS compression ��
Direct compression ��
Randomized compression . ��

�.� HssMatrices.jl ��

The focus of this chapter is to introduce some of the many useful al-
gorithms for hierarchical matrices, which will be useful subsequently.
We keep our focus on hierarchical matrices with HODLR/HSS struc-
tures. Many of the algorithms for HODLR matrices can be derived by
formulating algorithms for block matrices of the form

A ⇤

A11 A12
A21 A22

�
(�.�)

and then modifying them to be recursive in A11 and A22. Section �.�
introduces a number of such algorithms to perform arithmetic using
HODLR matrices. These algorithms serve as a baseline for the HSS
arithmetic presented in Section �.�.

�.� HODLR arithmetic

We introduce some algorithms for performing arithmetic with HODLR
matrices. One of the most basic, yet essential operations is the computa-
tion of the matrix-vector product

x ! Ax ,

where A is a matrix partitioned according to (�.�) and x a vector of
similar size. Then, Algorithm �.� computes the matrix vector product in
a straight-forward manner. As mentioned earlier, we can modify the

procedure B���� M��V��(A,x)
Partition x ⇤ [x1 , x2]|
y1 A11x1
y1 y1 + A12x2
y2 A22x2
y2 y1 + A21x1
return y ⇤ [y1 , y2]|

end procedure
Algorithm �.�: A simple algorithm for the
multiplcation of a two-by-two block ma-
trix A with a vector x.

above algorithm to be called recursively on the diagonal blocks. This
yields Algorithm �.�. We would like to know the computational cost of
Algorithm �.� before we proceed. To determine this, we need to make
some assumptions regarding the HODLR structure of A. Firstly, we
assume that A is square and of order n, i.e. A 2 Cn⇥n . Moreover, we
assume that the HODLR rank is k, i.e., the rank of all off-diagonal blocks
is bounded by k. Finally we have to make an assumption about the depth
of the block cluster tree. As it is unreasonable to continue the hierarchical
partitioning once the size of leaf partitions match the rank k, we assume
that

2L�1 ⇡ n
k
. (�.�)

� Algorithms for hierarchical matrices ��

procedure HODLR M��V��(A,x)
if A is in HODLR format then

Partition x ⇤ [x1 , x2]|
y1 HODLR M��V��(A11 , x1)
y1 y1 + A12x2
y2 HODLR M��V��(A22 , x2)
y2 y2 + A21x1
return y ⇤ [y1 , y2]|

else
return y ⇤ Ax

end if
end procedure

Algorithm �.�: Algorithm for matrix-
vector multiplication of a HODLR matrix
A with a vector x.

Then, the total amount of work (number of FLOPs) W(n , k) to execute
Algorithm �.� amounts to

W(n , k) ⇤
LX

l⇤1
2 · 2l�1 n

2l�1 k +
n2

2L�1

⇤ 2(L � 1)nk +
n2

2L�1 ⇤ 2nk log n
k
+ nk ⇤ O(kn log n). (�.�)

This is an encouraging result, considering the O(n2) cost of matrix-vector
multiplication with a dense matrix.

Similarly, we construct an algorithm for the addition of two HODLR
matrices A and B with identical block structures. Algorithm �.� reveals

procedure HODLR A��(A,B)
if A and B are in HODLR format then

C11 HODLR A��(A11 , B11)
C22 HODLR A��(A22 , B22)
Perform low-rank addition C12 B12 + B12
Perform low-rank addition C21 B12 + B21

return C ⇤

C11 C12
C21 C22

�
else

return C ⇤ A + B

end if
end procedure

Algorithm �.�: Algorithm for the addition
of two HODLR matrices A and B with
identical block structure.

one of the main caveats of hierarchical matrix, that is, ranks tend to
grow, when arithmetic is performed. The simple addition of two low-
rank matrices of rank k, in Algorithm �.� results in a low-rank matrix
of rank 2k. In practice however, many matrices retain their low-rank
property after arithmetic is performed. Thus, we may need to perform
recompression on each off-diagonal block to maintain the computational
efficiency of our methods.

Other algorithms for matrix arithmetic using HODLR matrices can be
formulated in a similar fashion [��]. For instance, we can formulate
algorithms for computing AB or A

�1
B, where A and B are HODLR

matrices with compatible clusters, i.e., the column cluster tree of A

should match the row cluster tree of B.

� Algorithms for hierarchical matrices ��

�: In the majority of the literature the
block-LDR factorization (�.�) is referred to
as block-LU factorization.

Table �.�: Computational complexity of
common operations using HODLR ma-
trices. A and B denote HODLR matrices
of order n with compatible cluster trees
and maximal HODLR rank k. x denotes a
vector of suitable size.

operation complexity
x ! Ax O(kn log n)
x ! A

�1
x O(k2n log2 n)

B! A + B O(k2n log n)
B! AB O(k2n log2 n)
B! A

�1
B O(k2n log n)

Table �.�: Computational complexity of
arithmetic using HSS matrices. A and B

denote HSS matrices of order n with com-
patible cluster trees and maximum HSS
rank k. x denotes a vector of suitable size.

operation complexity
x ! Ax O(kn)
x ! A

�1
x O(k2n)

B! A + B O(k2n)
B! AB O(k2n)
B! A

�1
B O(k2n)

An algorithm for the inversion of a two-by-two block matrix can be
achieved using the block-LDR factorization (�.�) and the Schur comple-
ment S11 ⇤ A11�A12A

�1
22 A21. � Algorithm �.� outlines such an algorithm

were

procedure HODLR I������(A)
if A is in HODLR format then

X22 HODLR I������(A22)
X11 HODLR I������(A11 � A12X22A21)
C

X11 �X11A12X22

�X22A21X11 X22 + X22A21X11A12X22

�
Recompress bottom-right block of C

return C

else
return A

�1

end if
end procedure

Algorithm �.�: Algorithm to compute the
inverse of the HODLR matrix A, assuming
that it is.

Table �.� provides an overview of the computational complexities of
HODLR arithmetic involving either two HODLR matrices or a HODLR
matrix and a dense vector [��]. We observe that all operations are
quasilinear with dependencies of either n log n or n log2 n, if we assume
the ranks to be a small constant k ⌧ n.

�.� HSS arithmetic

The log-factors in the complexity of HODLR algorithms are a conse-
quence of the nested tree structure, as we would expect for algorithms
involving tree structures. Nested bases allow to improve upon the quasi-
linear complexities to achieve true linear complexity (assuming that
off-diagonal ranks k are constant). Table �.� lists the computational cost
of various arithmetic operations involving HSS matrices. To showcase
how the nested bases can be exploited, we present two of the algorithms,
matrix-vector multiplication and solving linear systems involving HSS
matrices.

HSS matrix-vector multiplication

To formulate an algorithm for HSS matrix-vector multiplications, we
consider the recursive definition (�.��) of a HSS matrix A and apply it to
a vector x. Going from the bottom up, we can split the product b ⇤ Ax

into the sequence

y
(L)

⇤
�
V

(L)� ⇤
x , (�.�a)

y
(l)

⇤
�
V

(l)� ⇤
y
(l+1) , for l ⇤ L � 1, L � 2, . . . , 1 (�.�b)

z
(1)

⇤ B
(0)

y
(1) , (�.�c)

z
(l)

⇤ U
(l�1)

z
(l�1)

+ B
(l�1)

y
(l) , for l ⇤ 2, . . . , L (�.�d)

b ⇤ Ax ⇤ U
(L)

z
(L)

+ D
(L)

x , (�.�e)

� Algorithms for hierarchical matrices ��

where (�.�a)-(�.�b) traverse the HSS tree structure from the bottom up
and (�.�c)-(�.�e) do so from top to bottom. Algorithm �.� implements
this scheme while simultaneously exploiting the blockdiagonal structure
of the involved matrices.

procedure HSS M��V��(A, x)
for all nodes j from the bottom-up do

if j is a leaf node then
Set y

(L)
j

�
V

(L)
j

� ⇤
x(J(L)j)

else

Compute y
(l)
j

�
V

(l)
j

� ⇤ "y
(l�1)
c1

y
(l�1)
c2

#

end if
end for
for all nodes j from top to bottom do

if j is the root node then

Compute

"
z
(l+1)
c1

z
(l+1)
c2

#

"
0 B̃

(l+1)
c1 ,c2

B̃
(l+1)
c1 ,c1

0

"
y
(l+1)
c1

y
(l+1)
c2

#

else if j is not a leaf node then

Compute

"
z
(l+1)
c1

z
(l+1)
c2

#
 U

(l)
j z

(l)
j +

"
0 B̃

(l+1)
c1 ,c2

B̃
(l+1)
c1 ,c1

0

"
y
(l+1)
c1

y
(l+1)
c2

#

end if
end for
for all leaf nodes j do

Set b(IL
j) U

(L)
j + D

(L)
j x(JL

j)
end for
return b

end procedure

Algorithm �.�: Efficient algorithm for
matrix-vector computation x ! Ax with
a HSS matrix A. c1 , c2 denote the indices
pointing to the children elements of j. An
implementation can be found in [��].

We determine the computational work required to compute the HSS
matrix-vector product as for Algorithm �.�. Assuming that matrix-vector
multiplication with a dense matrix is a O(mn) operation, summing all
operations in (�.�) yields a total work of

W(n , k) ⇠ 2L�1k
n

2L�1 +

L�1X
l⇤1

2l�1k2
⇤ nk + k2 2L�1 � 1

2 � 1
⇠ nk

⇤ O(kn). (�.�)

Thus, we have eliminated the log-factor in the computational complexity
courtesy of the nested bases and the resulting re-use of matrix-vector
products. A parallel can be drawn to fast-multipole methods where
such nestedness properties are exploited to obtain linear complexity
algorithms [��, ��].

ULV factorization and solver

As we are solving large linear systems, one of the central arithmetic
operations will be the action of the inverse on a vector x, i.e. x ! A

�1
x, as

well as the application of the inverse on a HSS matrix B with compatible
clustering, B! A

�1
B. The core idea has been presented in [��] and, a

modification for the application to HSS matrices has later been presented

� Algorithms for hierarchical matrices ��

(a) step �

(b) step �

(c) step �

(d) step �

(e) step �

Figure �.�: Illustration of the ULV factor-
ization algorithm for HSS matrices. White
blocks indicate zero blocks. Steps �-� show
the reduction procedure if off-diagonal
blocks are compressible. If they are not,
leaf nodes are merged as illustrated in
step �. The matrices in step � and � are not
scaled to size.

�: The QL- and LQ-decompositions here
are related to the QR-factorization (�.��),
where L is a lower triangular matrix. These
factorizations can be computed with slight
modifications to the algorithms for com-
puting the QR-factorization.

in [��]. We outline the basic idea of the former and refer the reader to
[��] for a detailed description of the algorithm. We use a balanced HSS
matrix as depicted in Figure �.�a. The algorithm is recursive and operates
in two modes.

For the first mode, let us assume that we are situated at the leaf level L of
the HSS matrix. We observe that the column generators U

(L)
i at this level

span the HSS block rows. We assume that ki , the number of columns of
U

(L)
i is strictly smaller than the number of rows mi . Then, by forming

a QL-decomposition � of U
(L)
i , we find an orthogonal transform Q

(L)
i ,

such that

Ū
(L)
i ⇤

�
Q

(L)
i

� ⇤
U

(L)
i ⇤

0

Û
(L)
i

�
, (�.�)

which introduces mi � ki zero rows into the HSS block row. This situation
is illustrated in Figure �.�b. Simultaneously, the right-hand side b

(L)
i ⇤

b(JL
i) has been modified to

�
Q

(L)
i

� ⇤
b
(L)
i ⇤

"
b̌
(L)
i
?

#
, (�.�)

where we have again exposed the first mi � ki rows b̌
(L)
i . For each of

the modified diagonal blocks
�
Q

(L)
i

� ⇤
D

(L)
i , we now compute its LQ-

factorization, which yields the orthogonal transform W
(L)
i , such that

D̄
(L)
i ⇤

�
Q

(L)
i

� ⇤
D

(L)
i

�
W

(L)
i

� ⇤
⇤

"
D̄

(L)
i ,1,1 0

D̄
(L)
i ,2,1 D̄

(L)
i ,2,2

#
. (�.�)

As for the matrix on the right, it has been partitioned to expose the first
(mi � ki) ⇥ (mi � ki) block as in (�.�). To account for the action of W

(L)
i

on the off-diagonal blocks, we can simply multiply it onto the shared
generator of the row space of the HSS block column V

(L)
i , which yields

V̄
(L)
i ⇤ W

(L)
i V

(L)
i ⇤

"
V̌

(L)
i

V̂
(L)
i

#
. (�.�)

This transformation has to be taken into account for the vector of un-
knowns x

(L)
i ⇤ x(JL

i), and we write

W
(L)
i x

(L)
i ⇤

"
x̌
(L)
i

x̂
(L)
i

#
, (�.��)

where x̌
(L)
i corresponds to the first mi � ki rows as usual. Figure �.�c

depicts the matrix A after the application of W
(L)
i at each leaf node. Due

to the introduction of the zero rows, the linear system corresponding to
the first mi � ki rows at each node is

D̄
(L)
i ,1,1 x̌

(L)
i ⇤ b̌

(L)
i , (�.��)

which we can solve for x̌
(L)
i through back-substitution. At this stage, we

have to update the right-hand side b̂
(L)
i , by multiplying the action of all

x̌
(L)
i with the corresponding blocks of the modified matrix A, which has

� Algorithms for hierarchical matrices ��

the form
diag

�
Q

(L)
i

� ⇤
A diag

�
W

(L)
i

� ⇤
. (�.��)

Because the block diagonal matrices conform to the cluster of A, we
observe that this is just another HSS matrix. We introduce the vector x̌,
which holds x̌

(L)
i at the entries JL

i and zero everywhere else. Then, we
can compute the updated right-hand side

b̄ ⇤ diag
�
Q

(L)
i

� ⇤
b � diag

�
Q

(L)
i

� ⇤
A diag

�
W

(L)
i

� ⇤
x̌ (�.��)

using the HSS matrix-vector multiplication. Ideally this is done in a
way which exploits the zero-blocks that appear in the product. We can
disregard the first mi � ki rows and form a new linear system

Âx̂ ⇤ b̂ , (�.��)

where we have stacked the remaining non-zero rows at each node to
form Â, x̂ and b̂. In particular, we have

b̄ ⇤

"
?

b̂
(L)
i

#
, (�.��)

where b̂
(L)
i denotes the ki rows that are to be passed on to the next

step. The matrix Â denotes the modified HSS matrix with diagonal
blocks D̄

(L)
i ,2,2, and generators Û

(L)
i , V̂

(L)
i on the bottom level. On the other

hand, the blocks B
(L)
i , j , U

(L)
i , V

(L)
i at higher levels in the hierarchy remain

unchanged. The resulting linear system is illustrated in Figure �.�d. Once
the remaining system is solved and x̂ is known, we can recover the
solution x using (�.��).

This brings us to the second mode, in which ki is equal or larger than
mi . In this case, we can not further reduce A. Instead, we merge the leaf
nodes by setting

D
(L�1)
i

"
D

(L)
c1

U
(L)
c1

B̃
(L)
c1 ,c2

(V (L)
c2

)⇤
U

(L)
c2

B̃
(L)
c2 ,c1

(V (L)
c1

)⇤ D
(L)
c1

#
, (�.��a)

U
(L�1)
i

"
U

(L)
c1

U
(L)
c2

#
U

(L�1)
i , (�.��b)

V
(L�1)
i

"
V

(L)
c1

V
(L)
c2

#
V

(L�1)
i , (�.��c)

for each node i at level L � 1 with children c1 and c2, which yields a
modified HSS matrix with one less level. This is illustrated in Figure
�.�e. The algorithm proceeds by restarting the recursion and by checking
whether the modified system is reducible. If the matrix is simply one
diagonal block, the recursion terminates and the result is computed
using dense arithmetic. Algorithm �.� summarizes all of the above in a
high-level overview.

Starting from this, various algorithms can be formulated. By skipping
the application to the right-hand side (�.��) and the solve steps, we can
formulate an algorithm, which implicitly forms the inverse A

�1 to be
applied later. More importantly, we can formulate an algorithm which

� Algorithms for hierarchical matrices ��

procedure HSS S����(A, b)
if A is reducible then

for all leaf nodes i do
Reduce to ULV form according to Equations (�.�) to (�.�)

end for
Compute the updated right-hand side b̄ as in Equation �.��
Form Âx̂ ⇤ b̂ according to Equation �.��
Call x̂ HSS S����(Â, b̂)
Compute x from x̂ according to Equation �.��
return x

else if A is a full matrix then
return A

�1
b

else
Prune leaf nodes of A according to Equation �.��
Call x HSS S����(A, b)
return x

end if
end procedure

Algorithm �.�: Solves the linear system
where A is a HSS matrix and b a vector
using the implicit ULV factorization. An
implementation can be found in [��].

applies the inverse A
�1 to another HSS matrix with compatible tree

clusters, in the sense that A and B have identital row cluster trees [��].
Implementations of this algorithm and the efficient solver can be found
in [��, ��].

�.� HSS compression

The efficient arithmetic that we have discussed so far becomes irrelevant,
unless we have access to efficient methods for computing the hierarchical
representations of the relevant matrices. There are two main approaches
when it comes to constructing such representations. The first one is
analytical, in the sense that the representation can be constructed from
the underlying analytical expressions of the continuous integral operator
[��]. Such methods are often used in the literature on boundary element
methods and H2-matrices [��]. Such approaches usually use analytical
expansions such as the multipole expansion to find suitable representa-
tions [��, ��]. This is very problem-specific and generally inapplicable,
especially in the case of weak admissibility conditions, where such ex-
pansions cannot be computed. In many cases, one may suspect that the
matrix can be represented in a hierarchical matrix format, but without
a proof for this. Compression methods aim to find the representation
algebraically, by directly attempting to compute the hierarchical matrix
representation [��]. We present two different algorithms to compute HSS
representations of a matrix.

Direct compression

The first method for compression is a direct method, much in the
same way that a QR-factorization can be used to compute low-rank
representations. Our treatment closely follows the discussion in [��],
where the method was first described.

� Algorithms for hierarchical matrices ��

�
�

� �

�

� �
Figure �.�: Illustration of numbering in
the HSS hierarchy.

To understand the direct compression algorithm, we start with a concrete
examble of a matrix A, that we partition into a 4 by 4 block matrix

A ⇤

26666664

A11 A12 A14 A15
A21 A22 A24 A25
A41 A42 A44 A45
A51 A52 A54 A55

37777775
, (�.��)

which is numbered according to the post-ordering of the HSS tree
illustrated in Figure �.�.

Furthermore, we introduce the notation A3,: to denote the block row
corresponding to node �, i.e.

A3,: ⇤

A14 A15
A24 A25

�
,

and so on. In a first step, we determine all the diagonal blocks D1 ⇤ A11,
D2 ⇤ A22, etc., and set

D ⇤ diag(D1 ,D2 ,D3 ,D4). (�.��)

Then, we start with node � at the leaf level. Using a pivoted QR-
factorization, we can extract a column-space of the first HSS block
row

U1
⇥
U
⇤
1A12 U

⇤
1A14 U

⇤
1A15

⇤
⇤ U1

⇥
Ã12 Ã14 Ã15

⇤
. (�.��)

For an adaptive algorithm, this is done with a rank-revealing QR factor-
ization, such that the numerical rank of the HSS block row is revealed.
As U1 has the dimensions m1 ⇥ k1, the blocks Ã12, Ã14, Ã15 are effectively
compressed to have a leading dimension of k1. We repeat the same
procedure for the first HSS block column, to extract a row space V1, such
that

V1
⇥
V
⇤
1 A
⇤
21 V

⇤
1 A
⇤
41 V

⇤
1 A
⇤
51
⇤
⇤ V1

⇥
Ã
⇤
21 Ã

⇤
41 Ã

⇤
51
⇤
. (�.��)

After processing node �, A can be written as

A ⇤

26666664

U1
I

I

I

37777775

26666664

0 Ã12 Ã14 Ã15
Ã21 0 A24 A25
Ã41 A42 0 A45
Ã51 A52 A54 0

37777775

26666664

V
⇤
1

I

I

I

37777775
+ D.

We observe that we can safely ignore any previously constructed bases
while proceeding through the compression. Repeating the procedure for
node � and taking into account previously compressed parts, we compute
U2, V2 from the compressed HSS block rows and column corresponding
to node �. This yields

U2
⇥
U
⇤
2Ã21 U

⇤
2A24 U

⇤
1A25

⇤
⇤ U2

⇥
B̃21 Ã24 Ã25

⇤
,

V2
⇥
V
⇤
1 A
⇤
12 V

⇤
2 A
⇤
42 V

⇤
1 A
⇤
52
⇤
⇤ V1

⇥
B̃
⇤
12 Ã

⇤
42 Ã

⇤
52
⇤
,

where we have already identified the blocks B̃21 and B̃12, which make

� Algorithms for hierarchical matrices ��

up the block B3. Consequently, we can rewrite A as

A ⇤

26666664

U1
U2

I

I

37777775

26666664

0 B̃12 Ã14 Ã15
B̃21 0 Ã24 Ã25
Ã41 Ã42 0 A45
Ã51 Ã52 A54 0

37777775

26666664

V
⇤
1

V
⇤
2

I

I

37777775
+ D ,

which already reveals some of the HSS structure. Moreover, we ob-
serve that we can safely ignore any previously constructed bases while
proceeding through the compression.

We move on to node �, which is the parent of nodes � and �. We extract
the modified HSS block row Ã3,: and use it to compute the translators
U3

Ã3,: ⇤

Ã14 Ã15
Ã24 Ã25

�
⇤ U3

⇥
Ā34 Ā35

⇤
.

At this stage we can write A as

A ⇤

26666664

U1
U2

I

I

37777775
©≠
´
266664
U3

I

I

377775
266664

0 Ā34 Ā34
Ā43 0 A45
Ā53 A54 0

377775
266664
V ⇤3

I

I

377775

+

266664
B3

0
0

377775
™Æ
¨

26666664

V
⇤
1

V
⇤
2

I

I

37777775
+ D ,

which partly mirrors the HSS structure shown in (�.��). To continue the
compression for the nodes � and �, we can use the newly compressed
blocks Ā34, Ā35. We proceed with the compression, by processing nodes
�,�,� and �. At the root node �, there are no HSS block columns or
rows to compress and the method terminates with the extraction of the
off-diagonal blocks B7. The procedure is implemented using recursion in
Algorithm �.�, where we omit the details of how the block columns and
rows are formed as it should be evident from the above discussion.

�: When we overwrite the HSS block rows
and columns, their first/second dimen-
sion has changed, which has to be ac-
counted for.

procedure HSS C�������(A)
Initialize the HSS block structure
for all nodes i in post-order do

if i is a leaf node then
Extract the diagonal block Di
Extract Ui , Vi from HSS block row/column i
Apply U

⇤
i , V

⇤
i to the HSS block row/column�

else
Find children nodes c1 and c2
Extract off-diagonal blocks B̃c1 ,c2

and B̃c2 ,c1
if i is not the root node then

Extract Ui , Vi from HSS block row/column i
Apply U

⇤
i , V

⇤
i to the HSS block row/column�

end if
end if

end for
return A in HSS format

end procedure
Algorithm �.�: Direct compression algo-
rithm for HSS matrices. A concrete imple-
mentation can be found in [��].

� Algorithms for hierarchical matrices ��

This approach to HSS compression is general and will attempt to compress
any matrix A into HSS format. It will also reveal the HSS rank of A,
provided that a rank-revealing QR factorization is used to compute the
steps (�.��) and (�.��). However, its computational complexity is O(n2),
which makes it too expensive for most applications and undermines the
linear complexity arithmetic of HSS matrices.

Much in the same way as HODLR and low-rank approximations require
frequent recompression, this is also the case for HSS matrices. It is
therefore useful to derive a recompression method from the direct
compression Algorithm �.�, which can be used to recompress matrices
when ranks grow too large. The recompression algorihm is presented in
[��] and implementations can be found in [��, ��].

Randomized compression

In this section we discuss an alternative approach for compression, which
is based on randomized compression and has been first presented in [��].
In most cases, we do not have direct access to the matrix A as assumed
in the previos section. Instead, the matrix is given to us implicitly, in the
sense that we can compute matrix-vector products x ! Ax, x ! A

⇤
x

and we can access individual entries, i.e. (i , j)! A(i , j). Much like the
randomized methods for low-rank approximation, this method uses
randomized sampling to construct a HSS representation of A. Under the
assumption that the matrix-vector products can be computed in O(n)
operations and assuming that the access to individual entries is a O(1)
operation, we obtain an algorithm which can compress the matrix A in
O(k2n) operations.

To simplify the discussion, we assume that we are given a symmetric
matrix A of order n, which we know to be an HSS matrix of exact HSS
rank k. Let us assume that we have sampled the columns of A using the
m ⇥ (k + p) random Gaussian ⌦, where p is again a small integer for
oversampling:

S ⇤ A⌦. (�.��)

Moreover, let us assume that the diagonal blocks at the leaf level D
(L)

are known to us. Then, we observe that we can easily remove the action
of the diagonal block by computing

S
(L)

⇤ (A � D
(L))⌦ ⇤ S � D

(L)⌦. (�.��)

If I1 are the rows corresponding to the first leaf node in the cluster tree,
we have

Sloc,1 ⇤ S
(L)(I1 , :) ⇤ A(I1 , I \ I1)⌦(I \ I1 , :). (�.��)

In other words, we have sampled the first HSS block row of A, which is
spanned by the column generators U

(L)
1 . Thus, we can use the techniques

introduced in Chapter � to extract the generators. In a similar way,
for non-symmetric matrices, we can obtain the row generators V

(L) by
sampling A

⇤.

The question that arises is how to proceed with the algorithm recursively.
To obtain a sample matrix S

(L�1) of the HSS block rows on the next level,

� Algorithms for hierarchical matrices ��

we have to eliminate the diagonal element

D
(L�1)

⇤ U
(L)

B
(L�1) �

V
(L)� ⇤

+ D
(L) , (�.��)

which now includes contributions from the off-diagonal blocks B
(L�1) of

the previous level. If we have a way to obtain B
(L�1), we can therefore

compute

S
(L�1)

⇤ (A � D
(L�1))⌦ ⇤ (A � D

(L))⌦ � (D(L) � D
(L�1))⌦

⇤ S
(L) �U

(L)
B
(L�1) �

V
(L)� ⇤⌦, (�.��)

to obtain the sample matrix for the next level. Thus, we need to find a
way to determine the entries in the compressed blocks of B

(L�1) after
determining the generators U

(L) and V
(L). This is where the randomized

interpolative decomposition (�.��) comes into play. By applying the
interpolative decomposition to the transpose of S

(L)(I1 , :) in (�.��), we
select up to k rows Ĩ1 ✓ I1, such that

Sloc,1 ⇤ U
(L)
1 Sloc(Ĩ1 , :) ⇤ U

(L)
1 A(Ĩ1 , I \ I1)⌦(I \ I1 , :).

We repeat this for the node � to recover U
(L)
2 and Ĩ2. By the nature of the

interpolative decomposition, we find that

Sloc,1 ⇤ U
(L)
1 A(Ĩ1 , Ĩ2)

�
U

(L)
2

� ⇤
⌦(I2 , :)

+ U
(L)
1 A(Ĩ1 , I \ I3)

�
U

(L)
2

� ⇤
⌦(I \ I3 , :), (�.��)

and, we have succesfully isolated the action of the block associated to
A(I1 , I2). More importantly, we can extract B̃

(L)
1,2 by setting

B̃
(L)
1,2 ⇤ A(Ĩ1 , Ĩ2), (�.��)

which requires access to only O(k2) entries to determine the action of
the block A(I1 , I2). Moreover, due to the nestedness of the bases, we can
continue the factorization by only considering the selected rows and
columns Ĩ1 [Ĩ2. The method is summarized in Algorithm �.�. We refer
the reader to [��] for the non-symmetric case and a complete discussion
of the algorithm.

The merit of this algorithm is its low computational cost. It requires O(k)
matrix-vector products and access to O(kn) entries of A. The remaining
operations then require O(k2n) floating point operations. This brings the
overall cost to O(k2n), assuming that the matrix-vector multiplications
can be computed in O(n) operations and that the access to individual
entries is O(1).
In most cases, we are presented with a matrix that we assume to be
compressible, but we do not know its HSS rank k beforehand. In such
cases, it is useful to utilize an adaptive version of the algorithm, which
applies an error estimator to control the quality of the approximation.
A very simple approach using the Frobenius norm estimator (�.��) is
presented in Algorithm �.�. Here, we simply restart the compression if
the estimator exceeds the specified tolerance ✏. The sampling matrix used
to estimate the norm can be reused for the next iteration. This algorithm

� Algorithms for hierarchical matrices ��

procedure HSS R����� C�������(A, k)
Generate initial n ⇥ (k + p) random Gaussian matrix⌦
Evaluate S A⌦ via matrix-vector multiplication
for all levels l, starting from L to 1 do

for all nodes i on level l do
if i is a leaf node then

Iloc Ii
⌦loc ⌦(Ii , :)
Sloc S(Ii , :) � A(Ii , Ii)⌦loc
D

(l)
i A(Ii , Ii)

else
Let c1 and c2 be the two children of node i
Iloc

⇥
Ĩc1
, Ĩc2

⇤
⌦loc

⌦c1
⌦c2

�

Sloc

Sc1
� A(Ĩc1

, Ĩc2
)⌦c2

Sc2
� A(Ĩc2

, Ĩc1
)⌦c1

�

B
(l)
i

0 A(Ĩc1

, Ĩc2
)

A(Ĩc2
, Ĩc1

) 0

�
end if
Form interpolative Decomposition S

⇤ ⇡ S
⇤
loc(:, Ji)

�
U

(l)
i

� ⇤
⌦i

�
U

(l)
i

� ⇤
⌦loc

Si Sloc(Ji , :)
Ĩi Iloc(Ji)

end for
end for

end procedure
Algorithm �.�: Randomized HSS com-
pression of a symmetric HSS matrix A

of exact HSS rank k.

Generate initial n ⇥ (k + p) random Gaussian matrix⌦
Evaluate S A⌦ via matrix-vector multiplication
Form AHSS using S,⌦ and access to A

loop
Generate n ⇥ r random Gaussian matrix ⌦̃
Evaluate S̃ A⌦̃ via matrix-vector multiplication
if kS̃ � AHSS⌦̃k2F/r ✏2 then

return AHSS in HSS format, defined by U
(l)
i , D

(l)
i and B

(l)
i

else
Increase the rank: k k + r
Update⌦

⇥
⌦ ⌦̃

⇤
and S

⇥
S S̃

⇤
end if

end loop
Algorithm �.�: Adaptive version of the
randomized HSS compression algorithm
�.�.

results in a worst-case complexity of O(k3n) and depends largely on
how good the initial guess for k is. More sophisticated approaches which
use local error estimators to estimate the overall error are presented in
[��, ��, ��]. Moreover, restarting approaches can be utilized to not only
re-use the sample matrix from previous steps but also the rows and
columns selected by the interpolative decomposition, as done in [��].
Finally, we note that a fully matrix-free algorithm for the construction of
HSS matrices, purely based on randomized sampling and matrix-vector
products has been proposed [��]. However, this algorithm requires
O(log n) extra matrix-vector products, increasing the overall cost to
O(n log n) assuming linear complexity matrix-vector products.

� Algorithms for hierarchical matrices ��

Listing �.�: H��M�������.�� can be in-
stalled using the package manager P��.

using Pkg
Pkg.add("HssMatrices.jl")

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

��
��

��
��

��

��

��
��

��
��

��

��

��

��

Figure �.�: Result of using the command
plotranks(hssG).

�.� HssMatrices.jl

The algorithms that we have presented for HSS matrices have been
implemented in the programming language J���� and have been made
available as a Julia package under the name H��M�������.�� [��]. Its main
purpose is to provide a package for research and development purposes
in the programming language J����. We give a brief introduction of its
core functionality here.

After installation, we can load it by running using HssMatrices. Let us
construct a simple example matrix hssG, using the direct compression
algorithm:
A simple example using HssMatrices.jl
using LinearAlgebra
using HssMatrices

g(x,y) = abs(x-y) > 0. ? 1/abs(x-y) : 1.
G = [g(x,y) for x=-1:0.001:1, y=-1:0.001:1]
hssG = hss(G)

In this example, we first generate a discrete representation of the kernel
function g(x , y) ⇤ 1/(x � y) in G. The smart constructor hss(G) detects
that G is dense and uses the appropriate algorithm for constructing the
HSS representation. We can visualize the resulting HSS structure by
running
plotranks(hssG)

which yields a result similar to Figure �.�. We observe that the smart
constructor automatically generates cluster trees for the row- and column-
indices through bisection. If we want more control over the cluster
trees, we can generate them manually and pass them to the constructor.
The command bisection_cluster(2001, leafsize=100) will construct a
cluster tree of length ���� and maximum leafsize ��� using bisection. We
can pass these cluster trees to the constructor.
rcl = bisection_cluster(2001, leafsize=100)
ccl = bisection_cluster(2001, leafsize=100)
hssG = hss(G, rcl, ccl)

We can also extract the cluster trees of an existing matrix.
clusters(hssG)

We might want to manually specify which algorithm we would like to
use for compression.
hssG = compress(G, rcl, ccl)
hssG = randcompress(G, rcl, ccl, 22)
hssG = randcompress_adaptive(G, rcl, ccl)

The first line is the direct compression Algorithm �.�, the second one is
the randomized approach (Algorithm �.�), where a guess for the rank
is specified, and finally the third line is the adaptive version of the
randomized algorithm (Algorithm �.�).

Due to the functional nature of J����, we can also specify functions to be
passed on to the constructor. To use the randomized compression, we can
construct a LinearMap object which holds the functions for matrix-vector
multiplication and indexed access. Passing it to the constructor will cause
it to use the efficient algorithm with random sampling, which will then

� Algorithms for hierarchical matrices ��

�: The performance figures were obtained
on a ���� MacBook Pro with an Intel i�
Processor clocked at �.� GHz and ��GB of
RAM.

call the routines when needed. The following code creates a low-rank
matrix which is then compressed using the randomized algorithm:
U = randn(2001,3);
V = randn(2001,3);
L = LinearMap{Float64}(2001, 2001, (y,_,x) -> U*V'*x, (y,_,x) -> V

*U'*x, (i,j) -> U[i,:]*V[j,:]')
hssL = randcompress_adaptive(L, rcl, ccl)

Alternatively, we could call a specialized constructor to convert the
low-rank matrix into HSS format:
hssL = lowrank2hss(U, V, rcl, ccl)

To check the HSS rank we can run hssrank(hssL) which, unsurprisingly,
returns �. Another important feature for compression is error control.
We can directly control these parameters and others by passing them to
the constructor.
hssG = hss(G, leafsize=64, atol=1e-6, rtol=1e-6)

Normally, H��M�������.�� uses default values for these parameters. In
some settings, it is useful to set these parameters once. This can be done
in the following way:
Example for changing some of the standard parameters
HssMatrices.setopts!(leafsize=64)
HssMatrices.setopts!(atol=1e-9)
HssMatrices.setopts!(rtol=1e-9)
HssMatrices.setopts!(noversampling=10)

Knowing how to generate elementary HSS matrices and how to visualize
them, we are ready to try out some arithmetic. H��M�������.�� provides
all of the common arithmetic operations that one would expect. We
can define a vector and run the following commands to call the HSS
matrix-vector multiplication and the solve step via ULV factorization.
x = randn(2001,1)
hssA*x
hssA\x

Moreover, H��M�������.�� implements a number of algorithms for arith-
metic operations using multiple HSS matrices. We can for instance
run:
hssG+hssL
hssG-hssL
hssG*hssL
hssG\hssL
hssL/hssG

One important thing to note is that H��M�������.�� does not perform re-
compression automatically. Instead, it gives the user control of when and
how to perform recompression. In this way, we avoid over-compressing,
potentially with the wrong tolerances as we assume that the user is aware
of when best to recompress. To perform recompression we can run:
recompress!(hssG, atol=1e-3, rtol=1e-3)

Figure �.� shows the performance of selected algorithms implemented in
H��M�������.��. In particular, it shows execution times and memory usage
for both compression algorithms, as well as matrix-vector multiplication
and the efficient solver based on the ULV factorization. � The experiments
were performed with the matrix K(i , j) ⇤ log |xi � xj |, where xi 2 [0, 1]
is a set of equidistant points on the unit interval. It is clear that all

� Algorithms for hierarchical matrices ��

102 103 104
10�5

10�1

103

O(n)

O(n
2)

n

tim
e

(s
)

102 103 104
103

107

1011

O(n)

O(n
2)

n

m
em

or
y

(b
yt

es
)

direct compression randomized compression
matrix-vector multiplication solve linear system

Figure �.�: Timings and memory require-
ments of important HSS algorithms using
H��M�������.��.

algorithms apart from the direct compression Algorithm �.� achieve
linear complexity as we would expect.

For more information on the library, we invite the reader to take a look
online github.com/bonevbs/HssMatrices.jl [��].

https://github.com/bonevbs/HssMatrices.jl

�: The result is reported in Section �.�,
where it is compared to our numerical
experiments.

Hierarchical approximate solvers �
�.� Compressing the fill-in . . . ��

The inverse ��
Schur complements ��

�.� Existing methods ��
�.� Approximate factorization . ��

Well-separated nodes ��
Block elimination ��
Computing L̂

(�) and R̂
(�) . . ��

Compressing Ŝ
(�) ��

Forming the factorization . . ��
�.� Complexity of the algorithm ��

In Chapter �, we saw that the main contributor to the computational
cost of sparse direct solvers is the fill-in that is created during the
factorization. The main idea to pursue is to reduce this cost by using
rank-based approximations. More specifically, the Schur complements
arising in the factorization of matrices stemming from the discretization
of elliptic PDEs are known to be compressible using rank-structured
matrix formats [��–��]. The original idea can be traced back to [��, ��,
��, ��] and since then, variations of this idea have been proposed in the
literature [��, ��–��]. We loosely refer to these methods as hierarchical
approximate solvers as they exploit the hierarchical nature of both the
nested dissection and the rank structure of the fill-in.

In Section �.� we offer a rough intuition of why these methods work
before we give an overview of some existing methods in Section �.�.
A new algorithm is then introduced in Section �.�, which is the main
contribution of this work. The computational cost of the algorithm is
analyzed in Section �.�.

�.� Compressing the fill-in

In Chapter � we gained some intuition regarding discrete representations
of Green’s functions and their compressibility using hierarchical matrices.
This is essentially linked to the separability of variables corresponding
to row and column indices in disjoint regions. It is therefore inherently
intuitive that the inverse of the FE Galerkin matrix A

�1, which corre-
sponds to the discrete representation of the Green’s function should be
compressible using hierarchically rank-structured matrices. Bebendorf
and Hackbusch prove that the inverses of Galerkin matrices can indeed
be approximated with H-matrices [��]. [��] also proves useful theoretical
bounds on the off-diagonal ranks of the inverse, based on the quality
of the FE discretization. � Similar results are also reported for Schur
complements that arise in the structured factorization of A [��, ��]. We
pursue a purely algebraic approach to motivate the compressibility of
the inverse A

�1 and associated Schur complements.

Compressibility of the inverse

The following Lemma introduces a useful relationship between the ranks
of off-diagonal blocks in A and its inverse [��].

Lemma �.�.� (Ranks of the block-inverse) Let

A ⇤

A11 A12
A21 A22

�
, B ⇤ A

�1
⇤

B11 B12
B21 B22

�

� Hierarchical approximate solvers ��

�: Quasiseparable matrices possess a sim-
ilar property, which can be regarded as
special case of this theorem. Quasisepa-
rable matrices can be understood as HSS
matrices with a leaf size of 1 and HSS rank
1. Consequently, the inverse of a quasisep-
arable matrix is equally quasiseparable.

be invertible block matrices such that A11 , B11 2 Rm1⇥m1 and A22 , B22 2
Rm2⇥m2 . Moreover, let A11 and A22 be invertible. Then we have

rank B12 ⇤ rank A12 , (�.�)
rank B21 ⇤ rank A21 , (�.�)

Proof. As A11 and A22 are invertible, the diagonal blocks of B are given
by the inverse of the respective Schur complements

B
�1
11 ⇤ A11 � A12A

�1
22 A21 , (�.�)

B
�1
22 ⇤ A22 � A21A

�1
11 A12. (�.�)

The Schur determinant formula [��, pp. �] states

det(A) ⇤ det(A11)det(B�1
22) ⇤ det(A22)det(B�1

11), (�.�)

which implies that the diagonal blocks in B have full rank. Computing
AB ⇤ I yields

A11B12 + A12B22 ⇤ 0, (�.�)
A21B11 + A22B21 ⇤ 0, (�.�)

which implies rank A12 ⇤ rank B12 and rank A21 ⇤ rank B21.

Unfortunately, Lemma �.�.� is not very useful in finding bounds for a
HODLR matrix A and the off-diagonal ranks of its inverse. The situation
is slightly different with HSS matrices, where the definition of the HSS
rank allows us to prove the following Theorem.

Theorem �.�.� (The inverse of HSS matrices) Let A be an invertible
matrices and B ⇤ A

�1 its inverse. Assume that A is a HSS matrix of HSS
rank k for a given block cluster tree TI⇥I with invertible diagonal blocks. Then,
the inverse B is also a HSS matrix with clustering according to TI⇥I and
HSS rank k. �

Proof. For any diagonal block I l
i ⇥ I l

i 2 TI⇥I , we can find a permutation
matrix⇧which exposes the current diagonal block:

⇧A⇧�1
⇤

A(I l

i , I
l
i) A(I l

i , I \ I l
i)

A(I \ I l
i , I

l
i) A(I \ I l

i , I \ I l
i)

�
. (�.�)

Applying Lemma �.�.� then yields

rank B(I l
i , I \ I l

i) ⇤ rank A(I l
i , I \ I l

i) k ,

rank B(I \ I l
i , I

l
i) ⇤ rank A(I \ I l

i , I
l
i) k ,

which completes the proof.

To apply this theorem to FE Galerkin matrices, we need to convince
ourselves that these matrices can indeed be compressed into HSS format.
Figure �.� shows the Galerkin matrix of a Poisson problem in two
dimensions, compressed into HSS format with two different block cluster
trees. The clustering in Figure �.�c respects the nested-dissection structure

� Hierarchical approximate solvers ��

0 2,000 4,000 6,000

0

2,000

4,000

6,000

(a) Sparsity pattern of the matrix

0 2,000 4,000 6,000

0

2,000

4,000

6,000

��
��

��
��

���

���

��
��

�
�

���

���

���

���

��
��

��
��

���

���

��
��

��
��

���

���

���

���

���

���

(b) HSS with bisection clustering

0 2,000 4,000 6,000

0

2,000

4,000

6,000

��
��

��
��

��

��

��
��

��
��

��

��

��

��

��
��

��
��

��

��

��
��

��

��

���

���

���

���

���

���

(c) HSS with conforming clusters

Figure �.�: Stiffness matrix of the two-dimensional Poisson problem. The first figure shows the sparsity pattern due to the nested dissection
reordering. The two figures on the right show it in HSS format using a simple bisection clustering, as well as a conforming clustering on the
right.

0 500 1,000 1,500

0

500

1,000

1,500

��
�
��

��
��� �

��

��

�
��

��
�

�
�

�
��

�

�

�

�
��

��

�

��
�

�
�

�

��

�

��

�

�
��

��

�

�

��

�
�
�

�
��

��
�
��

� ��
��

�

�
��

��

�
�
�

�
��

�
� ��
�

�
�

��
�

�

�

��

�

��

�

�

�

��

�

�
��

��

��

�

�

�
�
�

�

�
�
�

� ��

�

�

�

�

�

�

�

�

�

�

��

�

�
��

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

�

(a) H-matrix, ⌘ ⇤ 0.25

0 500 1,000 1,500

0

500

1,000

1,500

��
��

��
��

��

��

��
��

��
��

��

��

��

��

��
��

��
��

��

��

��
��

��
��

��

��

��

��

��

��

(b) HSS format

Figure �.�: Rank structure of the top-level
Schur complement of a Poisson matrix in
two dimensions. In both cases the matri-
ces are compressed as H-matrices with bi-
nary cluster trees using the ⌘-admissibility
condition and a compression tolerance of
✏ ⇤ 10�6.

�: This is equally true for the update ma-
trices (�.��), which have comparable off-
diagonal and HSS ranks as the associated
Schur complements.

of the matrix, whereas the clustering in Figure �.�b is a straight-forward
bisection cluster. The former yields lower off-diagonal ranks but has
a suboptimal structure compared to the latter. We observe small off-
diagonal ranks, which implies good compressibility. This also implies
that a valid strategy for solving the linear system (�.��) is to compress A

into HSS format, and then solve it using the ULV algorithm �.�. Such
approaches have been used in situations, in which A can be constructed
directly or efficiently in hierarchical format, such as boundary element
methods (BEM) [��, ��–��]. For FE methods, this has a few drawbacks
however. Chief among them is the missed opprtunity of exploiting the
sparsity of A. Representing A as HSS matrix is in many cases less efficient
than the original, sparse representation. This could be remedied by using
sparse HSS representations. This is not sufficient however, as large zero
blocks are not exploited by the ULV algorithm in the same way as they
are with the structured elimination using nested dissection, as presented
in Section �.�.

Compressibility of Schur complements

We pursue another idea. Theorem �.�.� not only implies that the inverse
is compressible, but also the Schur complements that appear in the
factorization. This can be seen by considering the diagonal blocks of the
inverse, which are the inverses of the associated Schur complements.
As these diagonal blocks are themselves HSS matrices, we know that
their inverses must be HSS as well. We can therefore expect the Schur
complements in the structured factorization of A to be compressible as
well. � This property can be further explained by the the properties of the
so-called Dirichlet-to-Neumann operators, which is the integral operator
linked to the Schur complements. A detailed treatment on the matter can
be found in [��].

We investigate the rank structure of the top-level Schur complements as
they appear in the structured elimination. Figure �.� shows the Schur
complements for Poisson problems in two dimensions. In the top figure
we use an adaptive clustering to represent it as H-matrix. We generate
the cluster by refining inadmissible blocks into four submatrices. This
procedure is repeated recursively until a minimum block-size is reached.

� Hierarchical approximate solvers ��

0 1,000 2,000 3,000 4,000

0

1,000

2,000

3,000

4,000

���
���

���
���

��

��

���
��

��

���

���

��
���

��

���

���

��
��

���
���

������
��

��
��

���
���

��

���
��

��
��

���

���

�����

����

���

���

��
��
��

�� ��

��
��
��

��

�� ��

�� ��

�� ��

��

��
��
��

��
��
��

��
��
��

��

��

��

��

���

��
����

��
��

��
��

����
��
��

��
��

��

��
��

��

��

���

��

��
����

��
����

��

��
����

(a) ⌘ ⇤ 0.25

0 1,000 2,000 3,000 4,000

0

1,000

2,000

3,000

4,000

���
���

���
���

���

���

��
��

��
��

���

���

���

���

���

���

���

���

���

���

���
���

��
��

���

���

��
��

��
��

���

���

���

���

���

���

���

���

���

���

��

��

��

��

��

���

��

��

��

��

��

��

���

��

��

��

��

��

���

��

��

���

��

��

��

��

(b) ⌘ ⇤ 0.15

Figure �.�: Rank structure of the top-level
Schur complement of a Poisson matrix in
three dimensions. In both cases the matri-
ces are compressed as H-matrices with bi-
nary cluster trees using the ⌘-admissibility
condition and a compression tolerance of
✏ ⇤ 10�6.

0 1,000 2,000 3,000 4,000

0

1,000

2,000

3,000

4,000

���
���

���
���

���

���

���
���

���
���

���

���

���

���

���
���

���
���

���

���

���
���

���
���

���

���

���

���

���

���

Figure �.�: HSS Rank structure of the top-
level Schur complement for the Poisson
matrix in three dimensions. As in previous
examples the matrix is compressed using
a compression tolerance of ✏ ⇤ 10�6.

Blocks that remain inadmissible are then represented as dense matrices.
We can clearly see that most blocks in the upper and lower triangular
half of the matrix are admissible, which leads to a good compressibility
also in HSS format. This is illustrated in the bottom figure, which shows
the same matrix, but in HSS format.

The situation becomes somewhat worse in three dimensions. Figure �.�
depicts the Schur complementss for three-dimensional Poisson problems
and their rank structure in H-format. We observe that many more
blocks on the off-diagonal are not admissible. While we can relax the
admissibility condition to obtain a block diagonal structure, we can
see that many of the resulting blocks have ranks that are too large
to be efficient. Hence, we can expect considerably larger ranks, when
compressing to HSS format as evidenced in Figure �.�.

While this does not mean that rank-structured techniques are fundamen-
tally ineffective in three dimensions, it does require much larger matrices
for them to become effective.

�.� Existing methods

As mentioned earlier, the central idea that is pursued here is that the
fill-in is compressible with rank-structured formats. This is an active field
of study and a variety of algorithms have been proposed that exploit
this idea. The key question with these methods is how to efficiently
accumulate the action of the Schur complements which are now repre-
sented in a hierarchically rank-structured format. More precisely, how to
perform the extend-add operation (�.��) and how to compute the fill-in
in compressed format are the two key questions here. Before we proceed
with our algorithm, we give an overview of existing methods, which
aims to point out the differences to our approach.

Arithmetic, based on multifrontal elimination A straight-forward ap-
proach is obtained by replacing dense operations in the multifrontal
elimination with HSS arithmetic. Some entries in this category are
[��, ��, ��]. This requires the development of strategies to form
the fronal matrices and perform the extend-add operation (�.��)
using HSS matrices. In [��], the authors develop algorithms to
permute HSS matrices and extend them with zero blocks. Particular
care has to be taken for situations in which children nodes have
overlaps in their boundaries (�.�). Finally, the HSS blocks need to
be predetermined in a symbolic factorization stage. Consequently,
the algorithm is difficult to implement and not applicable to general
connectivities. In [��], the method is then extended to more general,
unstructured grids. In [��], the authors further integrate the HSS
ULV factorization algorithm �.� with the multifrontal method.
This allows them to use reduced representations for intermediate
matrices, which allows them to replace the specialized algorithms
for the HSS extend-add operation with simpler ones. The authors
report a complexity ofO(kn log n) in two dimensions andO(kn4/3)
in three dimensions to compute the factorization.

Arithmetic, based on sequential elimination It is also possible to use
the sequential Gaussian elimination as presented in Section �.�. In

� Hierarchical approximate solvers ��

[��], a fast direct solver based on sequential Gaussian elimination
and HODLR matrices is proposed. This approach works well on
meshes which can be arranged into concentric annuli, such that the
associated sparsity pattern consists of a tridiagonal and a conical
part [��]. The resulting algorithm requires O(n log2 n) operations
to solve the system.

Based on random sampling and multifrontal elimination [��, ��, ��]
and equally use structured elimination, however use some form of
randomized sampling and in particular, Algorithm �.� to compress
the fill-in. In the case of [��] and [��], the structured extend-add
process is replaced by a “skinny” extend-add operation, which
operates only on the matrix products of the fill-in and a random
matrix. In this way, the fill-in can be reconstructed using ran-
domized compression techniques. [��] similarly makes use of
randomized compression to avoid the extend-add operation, how-
ever we believe there is an oversight concerning the applicability
of the compression algorithm. More precisely, the necessity of
accessing individual entries for compression is not discussed and
it is not evident to us how this could be achieved.

Approximating A first There are also a large number of methods that
attempt to first approximate the matrix A with some hierarchically
structured matrix format, before it is factorized [��, ��–��, ��]. As
these are mostly unrelated to our approach, we do not discuss
them in detail and refer the reader to the original literature.

Our approach can be understood as a hybrid one, as we use both
randomized compression and structured matrix arithmetic to accelerate
the structured Gaussian elimination.

�.� Approximate factorization

We introduce our algorithm for forming an approximate factorization

A ⇡ P ⇤ LDR, (�.�)

which can either be used as a fast approximate solver or, alternatively,
as a preconditioner for an iterative method such as GMRES. We are
mainly concerned with the latter, but as we can control the error and
guarantee

kA � Pk ✏kAk
for a specified ✏ 2 R>0 with high probability, we point out that we can
use it as an approximate solver as well. To see how this affects the error
of the solution x, we can turn to a classical result from perturbation
analysis [��]. Solving the perturbed linear system

(A + �F)x̃ ⇤ b

with A, F 2 Rn⇥n and � 2 R>0 reveals that for any vector norm and
consistent matrix norm, the solution satisfies

k x̃ � xk
kxk �kA�1kkF k +O(�2).

� Hierarchical approximate solvers ��

�

µ ⌫

Figure �.�: Elimination of node �. Contri-
butions from the children µ and ⌫ have to
be accounted for. (repeated from page ��)

In particular, this means that the solution x̃ ⇤ P
�1

b, computed with the
approximate factorization, satisfies

k x̃ � xk
kxk ✏kA�1kkAk +O(✏2) ⇤ ✏(A) +O(✏2). (�.��)

Thus, we can control the error in the approximate solution x̃ by controlling
the quality of the approximate factorization P. The caveat is that according
to this error bound, which is conservative, the tolerance ✏ has to be
adapted to the condition number (A), which may lead to a prohibitivly
small ✏.

Well-separated nodes

We return to the task at hand, which is to improve the cost of computing
P ⇤ LDR by employing rank-structured approximations. We return to
the discussion in Section �.� and the elimination degrees of freedom in
A based on the nested dissection E .

Again, we are located at node � in the elimination tree as depicted in
Figure �.�. We remind ourselves of the notation I� and B�; I� are the
degrees of freedom that have been designated for elimination, loosely
referred to as the interior of �. B� is the boundary of � and contains all
degrees of freedom which receive contributions from the elimination of
�. We recall that we only have to consider Â

(�), which is the submatrix of
Ã

(�) containing all relevant entries (I� and B�) and proceed to eliminate
the interior degrees of freedom I� by factoring

Â
(�)

⇤

"
Ã

(�)
ii Ã

(�)
ib

Ã
(�)
bi Ã

(�)
bb

#
⇤

"
I 0

L̂
(�)

I

"
D̂

(�) 0
0 Ŝ

(�)

"
I R̂

(�)

0 I

#
(�.�)

D̂
(�)

⇤ Ã
(�)
ii , (�.�)

L̂
(�)

⇤ Ã
(�)
bi

�
Ã

(�)
ii

� �1
, (�.�a)

R̂
(�)

⇤
�
Ã

(�)
ii

� �1
Ã

(�)
ib , (�.�b)

Ŝ
(�)

⇤ Ã
(�)
bb � Ã

(�)
bi

�
Ã

(�)
ii

� �1
Ã

(�)
ib , (�.�)

where Ã represents the large intermediate matrix in which all nodes
leading up to � have been eliminated.

Let us imagine that we are eliminating ⌫ at the leaf level. Forming Â
(⌫) is

as straight-forward as extracting all entries coreresponding to the interior
I⌫ and the boundary B⌫ degrees of freedom from Ã

(⌫). Because ⌫ is a
leaf node, Ã

(⌫)
ii only contains entries from the original matrix. In general,

this is not the case for Ã
(⌫)
bi , Ã

(⌫)
ib and Ã

(⌫)
bb , as the boundary degrees of

freedom B⌫ might be shared with its sibling node µ, i.e. Bµ \ B⌫ , ;.
In the general scenario, we can proceed in one of two ways. The straight-
forward fashion is to eliminate node µ, then node ⌫ and then �. When
we eliminate ⌫, the matrix Â

(⌫) already contains contributions from
the elimination of µ in the parts associated with the boundary. These
contributions come in the form of entries extracted from the Schur
complement Ŝ

(µ). The alternative is to use the extend-add formalism (�.��)
introduced in Section �.�. In this case, we store the update matrices Û

(µ)

� Hierarchical approximate solvers ��

Bµ B⌫

Iµ I⌫

(a) interation of well-separated nodes

Box µ

Box ⌫
Box �

(b) nested dissection with boxes

Figure �.�: Illustration of well-separated
nodes. The top figure shows how the sib-
ling nodes interact with eachother only
through their boundaries. The bottom fig-
ure shows how the nested dissection can
be organized using boxes to generate an
elimination tree with this property.

and Û
(⌫) to keep track of the contributions from previous eliminations.

These two procedures are mathematically equivalent. However, this
choice has important consequences for algorithmic aspects of the method.
The big advantage of the extend-add formalism is its parallel nature. We
can simultaneously factor the sibling nodes µ and ⌫ without having to
account for the fill-in of the other sibling. Merging their contributions
happens at the parent node �, when we perform the extend-add operation.
In the former, this happens when we have to extract a submatrix from
the Ŝ

(µ), which contributes to Â
(�).

Let us now examine the core idea of compressing the dense fill-in using
rank-structured matrices. This either means that we compress and store
the Schur complements Ŝ

(µ) , Ŝ(⌫) , Ŝ(�) or their counterparts, the update
matrices Û

(µ) , Û (⌫) , Û (�). It is apparent that there are multiple challenges
to overcome. First of all, we would like to form the factorization (�.�)
efficiently. This we seek to overcome by employing efficient algorithms for
hierarchical matrices. Then there is the challenge of compression, which
we adress later on. Perhaps the biggest challenge is how to assemble the
matrix Â

(�) and integrate the contributions from the children nodes µ
and ⌫, which are represented in some hierarchical format.

We propose to make a slight constraint to the nested dissection, which
will greatly help our efforts in forming an approximate factorization
efficiently. We propose to consider elimination trees E which have the
well-separated property:

Definition �.�.� (well-separated nodes) Let E be a (binary) elimination
tree and µ, ⌫, � 2 E , such that µ and ⌫ are the children of � as usual. Then,
we call µ and ⌫ well-separated nodes, iff their boundaries Bµ and B⌫ are
disjoint, i.e.

Bµ \ B⌫ ⇤ ;. (�.��)

Then, we call E a well-separated elimination tree iff all sibling nodes in E are
well-separated.

The concept of well-separated nodes is illustrated in Figure �.�a. This
property implies that sibling nodes µ and ⌫ only interact with each
other through their disjoint boundaries Bµ \ B⌫ ⇤ ;. In other words, the
elimination of µ modifies only entries that are left unmodified by the
elimination of ⌫ and vice-versa. To generate such an elimination tree, we
modify the nested dissection algorithm to separate the degrees of freedom
using disjoint boxes as illustrated in Figure �.�b. By identifying boundary
and interior degrees of freedom, we make sure that the elimination tree
satisfies the well-separated property.

We return to the elimination of node �. Because µ and ⌫ are well-
separated, Bµ and B⌫ are disjoint, and we can form the four disjoint
index sets

I� \ Bµ, I� \ B⌫ , B� \ Bµ, B� \ B⌫ ,

which forms a partitioning of the indices associated with �. With this
partitioning, we take a renewed look at the matrix Â

(�), which we can

� Hierarchical approximate solvers ��

Ŝ(µ)
ii

Ŝ(µ)
bb

Ŝ(µ)
ib

Ŝ(µ)
bi

Figure �.�: HSS block structure of the
Schur complement. This partitioning mir-
rors the structure in the nested dissection
to allow easy extraction of submatrices in
either HSS or low-rank format.

�: We also could have chosen to compress
them in HODLR format.

write as

Â
(�)

⇤

2666666664

Ŝ
(µ)
ii Ã

(µ,⌫)
ii Ŝ

(µ)
ib Ã

(µ,⌫)
ib

Ã
(⌫,µ)
ii Ŝ

(⌫)
ii Ã

(⌫,µ)
ib Ŝ

(⌫)
ib

Ŝ
(µ)
bi Ã

(µ,⌫)
bi Ŝ

(µ)
bb Ã

(µ,⌫)
bb

Ã
(⌫,µ)
bi Ŝ

(⌫)
bi Ã

(⌫,µ)
bb Ŝ

(⌫)
bb

3777777775
(�.��)

Let us specify the newly defined matrices. Ŝ

�
µ
�

and Ŝ
(⌫) are the Schur

complements that are the result of factoring the children nodes µ and ⌫.
With an abuse of notation, we will name them with global indices, even
though they are “small” matrices and therefore require local indices.
Then, Ŝ

(µ)
ib indicates Ŝ

(µ)(I� \Bµ, B� \Bµ) and so on. Similarly, we write
Ã

(µ,⌫)
ib ⇤ A(I� \ Bµ, B� \ B⌫) to indicate entries taken from the original

matrix. Equation (�.��) makes it evident that there is no overlap between
the Schur complements of the children nodes. We identify the same block
structure as in (�.�) and the corresponding blocks Ã

(�)
bb , Ã

(�)
bi , Ã

(�)
ib and

Ã
(�)
ii and write the Schur complement as

Ŝ
(�)

⇤ Ã
(�)
bb � Ã

(�)
bi

�
Ã

(�)
ii

� �1
Ã

(�)
ib

⇤

"
Ŝ
(µ)
bb Ã

(µ,⌫)
bb

Ã
(⌫,µ)
bb Ŝ

(⌫)
bb

#
�

"
Ŝ
(µ)
bi Ã

(µ,⌫)
bi

Ã
(⌫,µ)
bi Ŝ

(⌫)
bi

"
Ŝ
(µ)
ii Ã

(µ,⌫)
ii

Ã
(⌫,µ)
ii Ŝ

(⌫)
ii

�1 "
Ŝ
(µ)
ib Ã

(µ,⌫)
ib

Ã
(⌫,µ)
ib Ŝ

(⌫)
ib

#
.

(�.��)

This contains all the products we need to form �, as well as the Schur
complement itself, which we need to pass on to consecutive factorization
steps.

Now, if Ŝ
(µ) and Ŝ

(⌫) are HSS matrices, is becomes apparent that we need
to extract the submatrices which appear in Equation �.��. � To make
this simple, we choose to store the Schur complement of the children
nodes µ, ⌫ using a clustering that conforms to the partitioning I� \ Bµ,
B�\Bµ of �. This is illustrated in Figure �.�. This partitioning exposes the
submatrix that will be eliminated next in the top left block. Consequently,
we can directly access Ŝ

(µ)
ii and Ŝ

(µ)
bb as HSS matrices. At the same time,

this permits the off-diagonal blocks Ŝ
(µ)
ib and Ŝ

(µ)
bi to be extracted as

low-rank matrices. In the following, we simply assume that the Schur
complements have been compressed in HSS format with the described
partitioning. The compression of Schur complements into HSS format
and their reordering is explained later in this Chapter.

Block elimination

Computing (�.��), and the factors Ŝ
(�), L̂

(�), R̂
(�) requires the efficient

application of the inverse

�
Â

(�)
ii

� �1
⇤

"
Ŝ
(µ)
ii Ã

(µ,⌫)
ii

Ã
(⌫,µ)
ii Ŝ

(⌫)
ii

�1

. (�.��)

� Hierarchical approximate solvers ��

Iµ Bµ B⌫ I⌫

(a) discontinuous Galerkin

Iµ Bµ B⌫ I⌫

(b) continuous Galerkin

Figure �.�: Illustration of the connectiv-
ity between µ and ⌫ for finite element
discretizations. Dashed lines represend in-
teractions between Bµ \ I� and B⌫ \ I�

and correspond to entries in Ã
(µ,⌫)
ii and

Ã
(⌫,µ)
ii .

�: The notation with subscripts i can be
misleading here and one might believe
that Ã

(µ,⌫)
ii should be zero. However, i

refers to the interior of the parent node
� and therefore, it contains the boundary
interaction of Bµ with B⌫ .

to the right X ! �
Â

(�)
ii

� �1
X and to the left X ! X

�
Â

(�)
ii

� �1. Given the
invertible block matrix

B ⇤

B11 B12
B21 B22

�

and a right-hand side X , with the corresponding partitioning, we can
apply the inverse to the right by using Algorithm �.�. We can also

Partition X ⇤

X1
X2

�
, corresponding to the blocks in B

X1 B
�1
11 X1

X2 X2 � B21X1
Form the Schur complement S̃ ⇤ B22 � B21B

�1
11 B12

X2 S̃
�1

X2
X1 X1 � B

�1
11 B12X2

return X ⇤

X1
X2

�
Algorithm �.�: Right-apply block inverse
of B to X .

construct a similar algorithm to apply the block inverse B
�1 to the left. It

is clear that an efficient algorithm requires efficient methods to form the
Schur complement S̃, as well as efficient methods to apply B11, B22 and
S̃.

As mentioned previously, we assume that the Schur complements Ŝ

�
µ
�
,

Ŝ
(⌫) have the block-structure shown in Figure �.�, which makes the

blocks Ŝ
(µ)
ii and Ŝ

(⌫)
ii readily available in HSS format. The off-diagonal

blocks Ã
(µ,⌫)
ii and Ã

(⌫,µ)
ii on the other hand, are submatrices of the original

matrix and therefore sparse. They represent the interactions between
the two children nodes µ and ⌫, restricted to the interior of �. � If
these matrices can be represented by hierarchical matrices with low
off-diagonal ranks, it will allow us to construct an accelerated algorithm
for the block inverse.

For finite element discretizations in two dimensions, these matrices are
essentially banded. Figure �.� depicts the corresponding connectivity for
both discontinuous Galerkin and continuous Galerkin discretizations
in two dimensions. Because the interaction of elements is limited to the
elements directly opposed, we see that the right reordering of Bµ and
B⌫ will ensure that Ã

(µ,⌫)
ii and Ã

(⌫,µ)
ii are banded. It is important to keep

in mind that Ã
(⌫,µ)
ii only corresponds to the dotted lines in Figure �.�.

Banded matrices, on the other hand, can be well-approximated with
hierarchical matrices, if their bandwidth is small.

� Hierarchical approximate solvers ��

�: For discontinuous Galerkin discretiza-
tions, we make sure that the blocks IL

i at
the leaf level conform to the elements of
the discretization. This can be done by
choosing a HSS block size �, which cor-
responds to a multiple of the number of
degrees of freedom per element. This also
makes the algorithm robust in the case
that the numbering is not conforming.

We let T
�
µ
�

r , T (⌫)
c denote the row and column cluster trees of Ŝ

�
µ
�

ii and
Ŝ
(⌫)
ii respectively and assume that they share the same tree structure,

which we might have to enforce algorithmically by pruning the cluster
trees. In two dimension, we can guarantee for all I l

i 2 T
�
µ
�

r and J l
i 2 T (⌫)

c
that

rank Ã
(µ,⌫)
ii (I l

i , J \ J l
i) nnz Ã

(µ,⌫)
ii (I l

i , J \ J l
i) ncon , (�.��a)

rank Ã
(µ,⌫)
ii (I \ I l

i , J
l
i) nnz Ã

(µ,⌫)
ii (I \ I l

i , J
l
i) ncon , (�.��b)

where ncon 2 N0 is a small constant. This constant depends on the
connectivity of A, and therefore on the chosen discretization of the
problem. In other words, the ranks of each block row and column are
bounded, which makes Ã

(µ,⌫)
ii and Ã

(⌫,µ)
ii HSS matrices of rank ncon

according to Definition �.�.�. Figure �.�a illustrates that for discontinuous
Galerkin discretization in two dimensions, this constant can be ncon ⇤ 0,
if the block structures conforms to the elements of the discretization.
Coincidentally, this makes it a block-diagonal matrix. For continuous
Galerkin discretizations in two dimensions, as illustrated in Figure �.�b,
the ideal case is ncon ⇤ 1.

The situation is more complicated in three dimensions. For discontinuous
Galerkin discretizations in three dimensions, the connectivity is still
similar to the situation depicted in Figure �.�b, as interactions only occur
through opposing faces. As a consequence, (�.��) still holds with ncon ⇤ 0.
For continuous Galerkin discretizations however, ncon depends on the
size of the matrix and it is evident, whether a similiar argument could be
recovered to guarantee that Ã

(⌫,µ)
ii is compressible.

Finally, we must take care in the construction of the nested dissection
E , in order to guarantee that the degrees of freedom are numbered
correctly, such that the argument applies. More precisely, we need to
ensure that the nodes are numbered similarly across the interface, such
that the interactions illustrated in Figure �.� are clustered around the
diagonal. In practice, however, this can be achieved by simply extending
the nested dissection hierarchy in its depth (see Section �). � To construct
Ã

(µ,⌫)
ii in HSS format, we can simply extract the HSS block diagonal

and check how many non-zero entries remain. We can then compress
the HSS matrix using the efficient HSS compression Algorithm �.� or
a custom compression algorithm adapted to the compression of very
sparse matrices.

Hence, for FE Galerkin matrices, Ã
(µ,⌫)
ii and Ã

(⌫,µ)
ii can indeed be expressed

as HSS matrices with low HSS rank. We modify Algorithm �.� using HSS
arithmetic to form the intermediate Schur complement S̃ in HSS format.
This requires the compression of Ã

(µ,⌫)
ii and Ã

(⌫,µ)
ii with compatible row

and column clusters among Ŝ
(⌫)
ii , Ã

(⌫,µ)
ii , Ŝ

(µ)
ii and Ã

(µ,⌫)
ii . The procedure

is described in Algorithm �.�. The formation of A
�1

B in HSS format
is based on the efficient inversion using the ULV factorization [��, ��].
This algorithm has a complexity of O(k2n), where n is the corresponding
matrix size and k is the maximum HSS rank encountered. Therefore, the
overall complexity of Algorithm �.� is O(k2n).

� Hierarchical approximate solvers ��

Partition X ⇤

X1
X2

�
, corresponding to the blocks in Â

(�)
ii

Extract clusters T (µ)
r , T (µ)

c and T (⌫)
r , T (⌫)

c of Ŝ
(µ)
ii and Ŝ

(⌫)
ii

Compress Ã
(µ,⌫)
ii into HSS format, conforming to T (µ)

r and T (⌫)
c

Compress Ã
(⌫,µ)
ii into HSS format, conforming to T (⌫)

r and T (µ)
c

X1
�
Ŝ
(µ)
ii

� �1
X1

X2 X2 � Â
(µ,⌫)
ii X1

Form S̃ Ŝ
(⌫)
ii � Ã

(⌫,µ)
ii

�
Ŝ
(µ)
ii

� �1
Ã

(µ,⌫)
ii in HSS form

Compute X2 S̃
�1

X2

X1 X1 �
�
Ŝ
(µ)
ii

� �1
Â

(µ,⌫)
ii X2

return X ⇤

X1
X2

�
Algorithm �.�: Right-apply the block in-
verse of Â

(�)
ii using HSS arithmetic.

Computing the left and right transforms

We move on to the computation of the factors L̂
(�) and R̂

(�). The right
transform is given by

R̂
(�)

⇤
�
Â

(�)
ii

� �1
Â

(�)
ib ⇤

⇣
Â

(�)
ii

⌘ �1
"

Ŝ

�
µ
�

ib Ã

�
µ,⌫

�
ib

Ã

�
⌫,µ

�
ib Ŝ

(⌫)
ib

#
. (�.��)

A close look at Ã
(�)
ib reveals that the diagonal blocks Ŝ

�
µ
�

ib and Ŝ
(⌫)
ib are

low-rank as they are off-diagonal blocks extracted from a HSS matrix.
The off-diagonal blocks Ã

�
µ,⌫

�
ib , Ã

�
⌫,µ

�
ib , on the other hand, are sparse, as

they reflect interactions between the interior degrees of freedom I� \ Bµ,
associated with box µ and the boundary degrees of freedom B� \ B⌫

associated with box ⌫. In two dimensions, it corresponds to interactions in
one point. In three dimensions, this interaction corresponds to interactions
along a line. Consequently, we can expect these blocks to have very few
non-zero entries.

The rank of the right transform rank R̂
(�) can therefore be bounded by

rank R̂
(�)

⇤ rank Â
(�)
ib

 rank Ŝ

�
µ
�

ib + rank Ŝ
(⌫)
ib + rank Ã

�
µ,⌫

�
ib + rank Ã

�
⌫,µ

�
ib

 hssrank Ŝ

�
µ
�
+ hssrank Ŝ

(⌫)
+ nnz Ã

�
µ,⌫

�
ib + nnz Ã

�
⌫,µ

�
ib ,

which implies that R̂
(�) is of low-rank itself if Ã

�
µ,⌫

�
ib and Ã

�
⌫,µ

�
ib are

sufficiently sparse. Thus L̂
(�) and R̂

(�) are themselves low-rank matrices
with ranks bounded by double the maximum HSS rank encountered
among Schur complements plus a small constant. This low-rank property
is well-known for matrices arising from Galerkin discretizations of elliptic
problems and has been documented and exploited in the literature [��, ��].
Here, we have shown how this property is related to the approximability
of Schur complements using hierarchical matrices, another property
which has been proven for these matrices [��–��].

Consequently, we can store the factors L̂
(�) and R̂

(�) in low-rank format

� Hierarchical approximate solvers ��

�: As the update matrices are low-rank,
it is possible that an improved algorithm
can be designed, which passes on update
matrices instead of Schur complements.
The blocks designated for elimination can
then be compressed and inverted directly.

�: The increased cost for accessing indi-
vidual entries is what increases the cost of
HSS compression to O(k2n log n).

represented by their generators. Moreover, as we can apply both
�
Â

(�)
ii

� �1

and Â
(�)
ib in linear time, we can use a randomized algorithm to compress

and store their low-rank representations efficiently in O(k3n) time [��].
An alternative is to first form a low-rank representation of Â

(�)
ib and then

apply the inverse of Â
(�)
ii to the left generator. This is summarized in

Algorithm �.�, which is more efficient in practice.

Extract X1 ⇤

"
Ŝ

�
µ
�

ib 0
0 Ŝ

(⌫)
ib

#
in low-rank format

Compress X2 ⇤

"
0 Ã

�
µ,⌫

�
ib

Ã

�
⌫,µ

�
ib 0

#
into low-rank format

Add Â
(�)
ib X1 + X2 and recompress

Form R̂
(�) �

Â
(�)
ii

� �1
Â

(�)
ib by applying

�
Â

(�)
ii

� �1 to the generator of
Â

(�)
ib

Algorithm �.�: Form the right transform
R̂
(�) in low-rank format.

Compressing the Schur complement

The final step to complete the factorization of � in compressed form is to
form the Schur complement (�.��) in HSS format, with a block structure
which conforms to the degrees of freedom of the parent node of �, as
shown in Figure �.�. To compute a HSS representation of the Schur
complement (�.��) via random sampling (Algorithm �.�), we require an
efficient way to compute x ! Ŝ

(�)
x, x ! �

Ŝ
(�)� ⇤

x and Ŝ
(�)(i , j).

The first matrix Â(�)
bb consists of HSS matrices on the diagonal and sparse

matrices on the off-diagonal. Therefore, the cost of performing matrix-
vector multiplications x ! Â

(�)
bb x is O(kn + nnzn), where nnz is the

maximum number of non-zero entries per line and k the maximum HSS
rank. On the other hand, the cost of accessing entries is O(log nnz), if
(i , j) lies in the sparse blocks and O(k log n) if it lies in the HSS blocks.
The update matrix Û

(�) can be written as

Û
(�)

⇤ �Â
(�)
bi

�
Â

(�)
ii

� �1
Â

(�)
ib ⇤ �Â

(�)
bi R̂

(�).

Because both Â
(�)
bi and R̂

(�) are low-rank matrices, we can compute their
product in O(k2n) operations. Subsequent matrix-vector products can
be computed in O(kn) time and individual entries can be accessed in
O(k) time. � Consequently, we can compress the Schur complement Ŝ

(�)

efficiently using the randomized algorithm in O(k2n log n) operations. �

Then, the matrix-vector products x ! Ŝ
(�)

x, x ! �
Ŝ
(�)� ⇤

x, as well as the
access to individual entries can be adapted to incorporate permutations of
the degrees of freedom. This allows us to compress the Schur complement
S
(�) with a block structure that exposes the correct submatrices for the

next factorization steps as depicted in Figure �.�. As such, we have
completed the factorization of � and we meet all the requirements to
continue with the factorization of the parent node.

� Hierarchical approximate solvers ��

��

�

�

� �

�

� �

��

��

� �

��

�� ��

E
L

HSS

Figure �.�: The switching level LHSS de-
termines the nodes E which are factored
using HSS arithmetic.

Forming the factorization

Just as with the direct solvers presented in Section �.�, we traverse the
elimination tree E from the bottom up, factoring the nodes in the order
prescribed by the elimination tree.

Most of the time, dense arithmetic outperforms HSS arithmetics when the
matrices involved are small, as there is typically an overhead associated
with the HSS datastructures and algorithms. Therefore, we introduce
a switching level LHSS and apply regular, structured elimination using
dense matrices at all nodes at levels l > LHSS below the switching level
(see Figure �.�). At the level at which we switch to HSS arithmetic, we
therefore have to compress dense Schur complements to HSS format,
which can be handled by Algorithm �.�.

There is an added benefit to extending the elimination tree below the
switching level LHSS. The compression of Schur complements to HSS
format can be quite sensitive to the order in which the degrees of freedom
appear. Extending the elimination tree below LHSS acts like a nested-
dissection reordering and we observe better compressibility of Schur
complements.

We summarize the factorization procedure in Algorithm �.�. The

for all nodes � 2 E from the bottom up do
if l < LHSS then

Form Â
(�)
ii by extracting the corresponding blocks

Factor Â
(�)
ii so that �.� can be applied

Compute L̂
(�) and R̂

(�) in low-rank format
else

Factor Â
(�)
ii using dense arithmetic

Form L̂
(�) and R̂

(�) using dense arithmetic
end if
if � is the root node then

Do nothing
else if l ⇤ LHSS then

Form Ŝ
(�) densely and compress to HSS form

else if l < LHSS then
Form Ŝ

(�) directly in HSS form via Algorithm �.�
else

Form and store Ŝ
(�) as dense matrix

end if
end for Algorithm �.�: Compute approximate fac-

torization A ⇡ LDR ⇤ P.

factorization P ⇤ LDR is therefore only formed implicitly. Just as we
have done for the structured direct solver in Section �.�, we require
an algorithm for applying the inverse P

�1
⇤ R

�1
D
�1

L
�1 efficiently to

a vector. This can be done by using Algorithm �.�, switching to HSS
arithmetic whenever it is applicable.

� Hierarchical approximate solvers ��

�.� Complexity of the algorithm

To determine the overall cost of forming the approximate factorization,
let us summarize the computational cost of the various operations
encountered for the factorization of each node. Table �.� provides an
overview of the computational complexity of the individual steps that
have to be performed at each node above the switching level. Here,

operation operation count
form Â

(�)
bb , Â

(�)
bi , Â

(�)
ii and Â

(�)
ib O(knl log nl)

factor Â
(�)
ii O(k2nl)

compute L̂
(�) and R̂

(�) O(k3nl)factorization

compress Ŝ
(�) O(k2nl log nl)

apply
�
Â

(�)
ii

� �1 O(knl)
apply L̂

(�) and R̂
(�) O(knl)application

apply Ŝ
(�) O(knl)

Table �.�: Summary of the computational
cost for the operations involved in the
factorization and application at each node.

we have assumed that the ranks of all low-rank matrices (both L̂
(�)

and R̂
(�), as well as off-diagonal blocks of Ŝ

(�)) can be bounded by the
maximum HSS rank k, which is typically the HSS rank of the top-level
Schur complement. Then, we use nl to denote the size of matrices at
level l. Finally, we have omitted the cost of extracting submatrices from
the sparse matrix A, as this is typically not a main part of the cost of
the overall factorization. We also drop any dependency on the number
of non-zero entries per column nnz, which is typically a constant for a
given problem. We point out that this may not be the case however, for
instance if p-refinement is considered. The main cost of the factorization
is either the compression of the Schur complement Ŝ

(�) or the formation
of the left and right transforms L̂

(�) and R̂
(�).

Determining the cost of the factorization is mainly a question of inserting
the updated cost at each node into the original calculation (�.��). All
operations below the switching level LHSS are decoupled and therefore,
their asymptotic cost is linear in n. This can be explained by the bottom
level of the hierarchy growing proportionally with the overall size of the
matrix. As such, we focus on the portion of the elimination tree, which
is above the switching level LHSS. We recall from (�.��) that the relation
between the overall size and the size of matrices at level l is given by
nl ⇠ 2�

d�1
d (l�1)n

d�1
d , which follows from geometric consideration of the

nested dissection.

The overall complexity can be determined by summing over all leaves. For
the factorization, the number of operations at each node isO(k2nl log nl+

k3nl). Therefore, the total number of operations required to form P is

W ⇠
LHSSX
l⇤1

2l�1(k3nl + k2nl log nl)

. n
d�1

d (k3
+ k2 log n)

LHSSX
l⇤1

2
1
d (l�1) ⇠ n

d�1
d (k3

+ k2 log n)2 1
d LHSS

⇠ k2n log n + k3n , (�.��)

� Hierarchical approximate solvers ��

�: In practice, the off-diagonal ranks k
have a non-trivial dependency on the over-
all size of the matrix n. This dependency
is problem-dependant and therefore omit-
ted in this discussion. For realistic cost
estimates however, this needs to be taken
into consideration.

where we have used that LHSS ⇠ log n. We conclude that the approximate
factorization P can be formed in quasilinear time O(k2n log n + k3n),
under the assumptions that we have made in Section �.� and assuming a
constant rank k. � A similar calculation can be carried out for the cost of
applying the preconditioner, which results in the linear complexity of
O(knl).

Numerical Experiments �
�.� Parameters ��
�.� Poisson problem ��
�.� Helmholtz problem ��

Nonstandard domains ��
Heterogeneous problems . . ��
Elastic wave equation ��
Frequency-domain ��

�.� Scaling and performance . . ��
�.� Codes for reproducibility . . ��
�.� Concluding remarks ��

We present numerical results obtained with the hierarchical precondition-
er/direct solver. We are mainly interested in investigating three questions.
First of all, we wish to investigate the performance of our method as a
preconditioner, especially with respect to h- and p-refinement as these are
typically valid questions that arise in the practical use of finite elements.
For wave problems, we are also interested in how this method behaves
with increasing wavenumbers, as this is known to be a challenging prob-
lem for preconditioning due to the indefinite nature of the problem. We
are also interested in verifying the computational complexity of forming
and applying the factorization. Finally, we recall that the computational
cost is also a function of the maximum off-diagonal rank k, encountered
in the factorization. As such, we wish to investigate the scaling behavior
of the ranks in the aforementioned scenarios.

As the main goal is to consider the use as a preconditioner, performance
will be mainly measured in terms of GMRES performance. To this end,
we use the restarted version of the GMRES Algorithm �.�, where the
Arnoldi vectors are recomputed every �� iterations. We consider the
number of iterations i, required for the relative residual of the solution
xi to meet a specified threshhold ✏sol, such that

kP�1
Axi � P

�1
bk2 ✏solkP�1

bk2. (�.�)

We terminate it once a relative residual smaller than ✏sol ⇤ 10�9 is
achieved. Alternatively, we terminate the computation if a maximum of
�� GMRES iterations is exceeded.

�.� Parameters

To avoid discussing parameters for each experiment, let us discuss the
standard parameters that we use for most experiments. Throughout
this chapter we use HSS compression with a tolerance of ✏HSS ⇤ 10�6 to
compress Schur complements. We use this tolerance both in the absolute
and relative sense. This implies that we keep refining until the tolerance
is met, either in the absolute or the relative sense. In a similar way,
we use 0.5 · ✏HSS as the tolerance for the compression of the low-rank
approximations of L̂

(�) and R̂
(�). The block-size of the HSS compression

is adapted to match the number of degrees of freedom in each element.
In two dimensions, we use

� ⇤ 10
(p + 1)(p + 2)

2
,

which corresponds to the number of degrees of freedom in �� elements if
a discontinuous Galerkin approximation of order p is used. Similarly,

� Numerical Experiments ��

we use
� ⇤ 180

(p + 1)(p + 2)(p + 3)
6

in three dimensions, corresponding to ��� elements. These choices are
based on our own experiences and are therefore unlikely to be optimal.
For optimized implementations, the block size should ideally be adapted
using a heuristic to guarantee that blocks are only compressed if there is
a performance benefit.

As discretizations, we consider both continuous Galerkin (CG) and
interior penalty discontinuous Galerkin (IPDG), discussed in [��]. The
domain is typically discretized using a triangular mesh and the nested
dissection is generated by recursively bisecting the mesh. For IPDG
formulations, we proceed with this until there are less than �� elements in
each box, for CG until there are less than �� elements per box. The depth
of the hierarchy LHSS, which determines performance, is typically chosen
to start � levels from the bottom of the nested dissection hierarchy. In
this way, we create an adaptive hierarchy which becomes deeper under
h-refinement.

�.� Poisson problem

We consider the Poisson problem (�.�) on the unit square⌦ ⇢ R2 in two
dimensions, with homogeneous Dirichlet boundary conditions gD ⇤ 0
on the entire boundary and right-hand side f ⇤ 1.

The first thing that we would like to investigate is how the performance of
the direct solver is affected by h- and p-refinement, as those are the major
mechanisms for increasing the fidelity of finite element approximations.
Moreover, we seek to understand whether we can expect consistent
performance irrespective of whether a continuous or discontinuous
Galerkin approximation is chosen. Figure �.� depicts the relative residual
over each GMRES iteration for various discretizations with a polynomial
degree of p ⇤ 4. Clearly, the preconditioner does its job and we observe
swift convergence to the solution. From this figure alone, we do not
observe any systematic difference between CG and IPDG discretizations.

To study things systematically, we repeat the above experiment for
various values of 1/h and ✏HSS and record the number of GMRES

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

CG discretization

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

IPDG discretization

h ⇤ 1/16 h ⇤ 1/32 h ⇤ 1/64 h ⇤ 1/128

Figure �.�: Relative residual for each itera-
tion of the preconditioned GMRES applied
to the Poisson problem. The figure on the
left depicts the case of a CG discretization
with p ⇤ 4, the figure on the right shows
results obtained with an IPDG discretiza-
tion of order p ⇤ 4.

� Numerical Experiments ��

10
4

10
5

0

10

20

30

n

G
M

R
E

S
it

e
r
a
ti

o
n

s

CG

10
4

10
5

0

50

100

n

m
a
x
im

u
m

r
a
n

k
k m

a
x

CG

10
4

10
5

10
6

0

10

20

30

n

G
M

R
E

S
it

e
r
a
ti

o
n

s

IPDG

10
4

10
5

10
6

0

50

100

n

m
a
x
im

u
m

r
a
n

k
k m

a
x

IPDG

✏
HSS

⇤ 10
�2 ✏

HSS
⇤ 10

�3 ✏
HSS

⇤ 10
�4

✏
HSS

⇤ 10
�5 ✏

HSS
⇤ 10

�6

Figure �.�: Preconditioner peformance un-
der h-refinement for the Poisson problem.
All experiments use a polynomial order of
p ⇤ 1 and the values for 1/h range from

iterations required to achieve the prescribed tolerance ✏sol. In addition,
we record the largest rank kmax encountered in either the off-diagonal
blocks of the Schur complements Ŝ

(�) or the low-rank approximations of
L̂
(�), R̂

(�). This usually corresponds to double the HSS rank of the top-level
Schur complement. Figure �.� depicts the results of this study. Right away,
we observe that it is important to control the quality of the compression
via ✏HSS and to ensure that the approximate factorization does a good job
of approximating A. Moreover, there is an upwards trend in the number
of iterations with decreasing h. This can be explained by the increasing
depth of the hierarchy LHSS. More precisely, we introduce errors due
to the approximative nature of the compressed Schur complements.
These cause further errors in the next elimination step and lead to an
accumulation of errors. We can expect this effect to be more pronounced
with increased depth LHSS. Consequently, we have to overcome this
effect by adapting the compression tolerance ✏HSS.

An encouraging trend for the ranks kmax is that they all seem to converge
towards the same value as we increase the compression accuracy. This
implies that the singular values decay abruptly once this rank is reached
and we therefore do not have to further increase the compression accuracy
to guarantee convergence. It is perhaps even more remarkable that this
value coincides for CG and IPDG discretizations. This suggests that
the nature of the finite element discretization itself does not play an
important role for the performance of our method. Moreover, the growth
of the ranks seem to slow down with increasing n.

To have a complete picture, we repeat the experiment, this time with
p-refinement, which is depicted in Figure �.�. Similar to what we have
observed for h-refinement, it is clear that we need to control the quality
of the approximation via ✏HSS, to ensure that the preconditioned GMRES
converges fast. This time around, the ranks grow more substantially, in

� Numerical Experiments ��

10
4

10
5

0

10

20

30

n

G
M

R
E

S
it

e
r
a
ti

o
n

s

CG

0.5 1 1.5

·10
5

0

100

200

n

m
a
x
im

u
m

r
a
n

k
k m

a
x

CG

10
4.5

10
5

0

10

20

30

n

G
M

R
E

S
it

e
r
a
ti

o
n

s

IPDG

0.5 1 1.5 2

·10
5

0

100

200

n

m
a
x
im

u
m

r
a
n

k
k m

a
x

IPDG

✏
HSS

⇤ 10
�2 ✏

HSS
⇤ 10

�3 ✏
HSS

⇤ 10
�4

✏
HSS

⇤ 10
�5 ✏

HSS
⇤ 10

�6

Figure �.�: Preconditioner peformance un-
der p-refinement for the Poisson prob-
lem. All experiments were performed
with 1/h ⇤ 64 and polynomial orders
p ⇤ 1, 2, . . . , 6.

�: We remind ourselves that the wave-
length is given by

� ⇤
2⇡

⇤
2⇡c
!
.

what appears to be linear growth. Moreover, the behavior is comparable
for both types of discretizations.

Overall, it seems that the method works better with CG discretizations
as with IPDG discretizations. This observation is hardly conclusive,
however, as there are many factors which play into this. This includes the
actual error of the discretization, the spectrum of off-diagonal blocks in
the resulting matrix and the different connectivities in the matrices. We
do remark, however, that the trends seem to be quite similar across the
two types of discretizations and we therefore conjecture that observations
for one type of discretization also have some validity for the other.

�.� Helmholtz problem

We move onto the Helmholtz problem �.�.� and indefinite, elliptic op-
erators. We keep the domain, discretization, boundary conditions and
right-hand side the same as before. The discretization of oscillatory
problems requires some extra care in the choice of p and h. This is mainly
due to the pollution effect, where the finite element error is dominated
by a so-called pollution term, whose contribution can be understood
as the phase difference between the correct solution and its numerical
approximation [��, ��]. We use the rule of thumb for standard techniques,
which is to have a minimum of �� grid points per wavelength [��]. �

The following results are obtained with preconditioned GMRES for an
IPDG discretization of the Helmholtz problem with p ⇤ 2 and h ⇤ 1/64
for exponentially increasing wave numbers ranging from ⇤ 4 to
 ⇤ 64. For all wavenumbers, the preconditioner is able to ensure
fast convergence. This includes the higher wavenumbers, which are
typically more difficult to handle with conventional preconditioning

� Numerical Experiments ��

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

� level hierarchy

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

� level hierarchy

 ⇤ 4 ⇤ 8 ⇤ 16
 ⇤ 32 ⇤ 64

Figure �.�: Relative residual at each it-
eration of preconditioned GMRES for
the IPDG discretization of the Helmholtz
problem �.� with h ⇤ 1/64 and p ⇤ 2. The
tests were performed using �- and �-level
hierarchies and a compression tolerance
of ✏HSS ⇤ 10�6.

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

� level hierarchy

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

� level hierarchy

 ⇤ 4 ⇤ 8 ⇤ 16
 ⇤ 32 ⇤ 64

Figure �.�: Relative residual at each it-
eration of preconditioned GMRES for
the IPDG discretization of the Helmholtz
problem �.� with h ⇤ 1/64 and p ⇤ 2.
The figure shows results with a decreased
accuracy of ✏HSS ⇤ 10�4.

techniques. We make the observation that the performance decreases
as the depth of the hierarchy increases. We have already observed
this indirectly with the Poisson problem, where we saw an upwards
trend when performing h-refinement and the associated increase in the
depth of the nested dissection hierarchies. This is most likely due to the
increased accumulation of errors that comes with deeper hierarchies.
We can amplify this effect by decreasing the compression tolerance to
✏HSS ⇤ 10�4. The results are depicted in Figure �.�. These results confirm
the notion that the compression tolerance has to be carefully chosen
to ensure an accurate approximation by the preconditioner. This also
depends on the depth of the hierarchy and therefore on the size of the
matrix, as we have already observed for the Poisson problem. Curiously,
it seems that the preconditioner fares better with higher wavenumbers
when it comes to increasingly deep hierarchies.

One of the most pressing questions for wave problems is how the
method performs in the limit of high wavenumbers. Figure �.� depicts
the number of GMRES iterations required to achieve a tolerance of
10�9, as well as the maximal rank kmax for exponentially increasing
wavenumbers ranging from ⇤ 2 to ⇤ 256. The encouraging part is
that the number of iterations remain constant, even for problems with
very high wavenumbers. As for the ranks, we observe that they slowly
increase as the wavenumbers grow. This relation is roughly linear�

and the maximum HSS rank of the Schur complements kmax/2 can be

� Numerical Experiments ��

101 102
0

5

10

15

wavenumber

G
M

RE
S

ite
ra

tio
ns

101 102
0

200

400

wavenumber

m
ax

im
um

ra
nk

k m
ax

h ⇤ 1/64 h ⇤ 1/128 h ⇤ 1/256

Figure �.�: Preconditioner performance at
exponentially increasing wave numbers
and p ⇤ 2. On the left, the number of GM-
RES iterations to reach a tolerance of 10�9

are depicted. On the right, the maximum
among HSS ranks of Schur complements
and ranks of the Gauss transforms kmax is
shown.

104 105
0

5

10

15

n

G
M

RE
S

ite
ra

tio
ns

104 105
0

50

100

150

n

m
ax

im
um

ra
nk

k m
ax

p ⇤ 1 p ⇤ 2 p ⇤ 3

Figure �.�: Preconditioner performance
for the Helmholtz problem under h-
refinement. n is the number of degrees
of freedom.

0 200 400 600

0

200

400

600

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(a) CG discretization

0 500 1,000 1,500

0

500

1,000

1,500

��
��

��
��

��

��
��

��
��

��

��

��

��

��

��
��

��
��

��

��
��

��
��

��

��

��

��

��

��

��

(b) IPDG discretization

Figure �.�: Top-level Schur complements
for the Helmholtz problem with h ⇤ 1/64,
p ⇤ 2, ⇤ 32 and ✏HSS ⇤ 10�6.

�: Note that the axis for is logarithmic

approximated by the relation

max
�2E

hssrank(Ŝ(�)) ⇤ kmax
2
⇡ 55 + 2 l

�
⇤ 55 + 2 l

2⇡
, (�.�)

where l is the width of the domain. This result is remarkably consistent
with results stated in [��, ��]. This estimate is also shown in Figure �.� as
dashed line. An intuitive explanation for this increase in ranks is that the
dissipative nature of the elliptic operator only applies to high-frequency
components of the solution which are above the frequency of the solution.
An increase in the wavenumber therefore corresponds to less information
which is dissipated and therefore, higher ranks [��].

We proceed to examine the performance for Helmholtz problems under
h- and p-refinement. To this end, we run our experiments with varying
discretizations with a fixed wavenumber of ⇤ 19.5. Figure �.� shows
the number of iterations and the maximal ranks under h-refinement. As
with the Poisson problems, we note that there is only a slight increase in
the number of iterations, which again can be attributed to the increasing
depth of the nested dissection hierarchy. Similarly, we observe only a
slight increase of the ranks, which is roughly logarithmic in relation to
the overall number of degrees of freedom. These results suggest that
the method remains efficient as both ranks and iterations grow slowly
compared to the problem size. This hypothesis is further investigated
in Section �.�. Figure �.� shows results for p-refinement obtained with
varying mesh widths of h ⇤ 1/32, h ⇤ 1/64 and h ⇤ 1/128. We increase
the polynomial degree from 1 to 8 for 1/32, and from 1 to 7 for h ⇤ 1/64
and h ⇤ 1/128. Again, we observe that the rank growth is approximately
linear in the degrees of freedom.

� Numerical Experiments ��

104 105 106
0

5

10

15

n

G
M

RE
S

ite
ra

tio
ns

0.5 1

·106

0

200

400

n

m
ax

im
um

ra
nk

k m
ax

h ⇤ 1/32 h ⇤ 1/64 h ⇤ 1/128

Figure �.�: Preconditioner performance
for the Helmholtz problem under p-
refinement. n is the number of degrees
of freedom.

Nonstandard domains

 ⇤ 1

�5 0 5

 ⇤ 4

�1 0 1

 ⇤ 8

�0.2 0 0.2

 ⇤ 12

�0.2 0 0.2

Figure �.��: Solution of the Helmholtz problem �.� on a guitar shaped domain. The figure on the left shows the nested dissection reordering.
The remaining figures illustrate solutions obtained with the wave numbers 1, 4 and 8.

So far, we only considered problems formulated on the square domain
⌦ ⇤ [�1, 1]2. To understand how our method performs on non-standard
domains, we apply it to the Helmholtz problem �.�.� formulated on a
guitar shaped domain, shown in Figure �.��. This domain has a height of
H ⇤ 40 and a width of 16. We select an average mesh width of h0 ⇤ H/100
and a polynomial degree of 4. This amounts to a total of 71760 degrees
of freedom. We choose zero Dirichlet boundary conditions gD ⇤ 0 on
the exterior of the guitar and zero Neumann boundaries gN ⇤ 0 at the
sound hole. The constant right-hand side is kept constant f ⇤ 1, which
corresponds to a uniform excitation on the whole domain.

The nested dissection of the domain is depicted on the left of Figure �.��.
Different colors imply different supernodes in the elimination tree. On
the right, solutions for the wavenumbers ⇤ 1, 4, 8, 12 are depicted.

We investigate how the method performs with varying wavenumbers.
Figure �.�� shows the residual history of preconditioned GMRES for
various wavenumbers and for various depths of the preconditioner
hierarchy (the HSS switching level). Figure �.�� depicts the situation
for a reduced accuracy of ✏HSS ⇤ 10�5. This time, the effect observed in

� Numerical Experiments ��

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

� level hierarchy

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

� level hierarchy

 ⇤ 2 ⇤ 4 ⇤ 6
 ⇤ 8 ⇤ 10 ⇤ 12

Figure �.��: Relative residual for various
wave numbers on the guitar shaped do-
main with h ⇤ 1/100 and p ⇤ 4 and a
compression tolerance of 10�6. In this ex-
ample we only control the compression in
the relative sense.

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

� level hierarchy

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

� level hierarchy

 ⇤ 2 ⇤ 4 ⇤ 6
 ⇤ 8 ⇤ 10 ⇤ 12

Figure �.��: Relative residual at for vari-
ous wave numbers on the guitar shaped
domain with h ⇤ 1/100 and p ⇤ 4 and
a compression tolerance of 10�5. In this
example we only control the compression
in the relative sense.

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

Figure �.��: Randomly generated hetero-
geneous zones in the case of five different
values for µ.

Figure �.� is more pronounced. This emphasizes the need to control the
compression tolerance in order to guarantee good results. An interesting
observation is that this effect seems to affect lower frequencies more
strongly than high frequencies.

Heterogeneous problems

We consider heterogeneous problems in which material coefficients vary
in space. One such example is the heterogeneous Helmholtz problem

�r · (µru) � !2u ⇤ f , (�.�)

subject to suitable boundary condition and right-hand side. Here µ :
⌦ ! R is a material distribution governing the wavespeed c ⇤

p
µ.

This problem can be particularly challenging if there are high contrasts
in the material distribution [��]. One approach to overcome this is to
adapt the nested disection so that separators conform to the high contrast
interfaces. To test this hypothesis, we formulate the heterogeneous
Helmholtz problem on a square domain, with piecewise constant µ. We
choose µ to conform to the elements and generate disparate zones with
different material coefficients. To ensure that these form large coherent
zones, we generate them by picking random points on the unit square
and then growing them outwards like a crystal until they touch. Figure
�.�� depicts such a material distribution with � different zones.

� Numerical Experiments ��

regular dissection conforming dissection
µ 2 kmax iters kmax iters
{0.6861, 0.7533, 1.2181} �� � ��� �
{10�1 , 1, 101} �� � ��� �
{10�2 , 1, 102} �� � ��� �
{0.5585, 1.2581, 1.3635, 1.3395, 0.6693} �� � ��� �
{10�2 , 10�1 , 1, 101 , 102} �� � ��� �
{10�4 , 10�2 , 1, 102 , 104} �� - �� ��

Table �.�: Comparison of both dissection
methods for the heterogeneous Helmholtz
problem with ⇤ 16.

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

�0.1 0 0.1

(a) � zones

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

�5 0 5

·10�2

(b) � zones

Figure �.��: Solution of the Helmholtz
problem with heterogeneous material co-
efficients. Both figures depict solutions for
 ⇤ 16 with � and � zones.

To test both variants of the nested dissection, we use an IPDG dis-
cretization of p ⇤ 2 and 1/h ⇤ 32 with a constant wavenumber of
 ⇤ 16. We use homogeneous boundary conditions and a constant
right-hand side. Figure �.�� depicts the numerical solutions with � and �
zones respectvely, where µ takes the values {0.6861, 0.7533, 1.2181} and
{0.5585, 1.2581, 1.3635, 1.3395, 0.6693}.
We compare both methods for generating a nested dissection. To test the
methods, we compare GMRES performance across a range of contrast
ratios for µ. Table �.� reports our results for a wavenumber of ⇤ 16.
We observe that for moderate to high contrast ratios, there is no benefit
of using the conforming dissection method. Conversely, it seems that
the conforming dissection leads to an increase in ranks, which can be
attributed to the separators not being regular in shape. By this we mean
that the separators are far away from being circles, which is known to
reduce the approximability using hierarchical matrices. This is related to
the approximate separability of the Green’s function [��], and its relation
to geometric properties of the underlying domain as discussed in Chapter
�. As a consequence, we can regard the problem as finding a balance
between shape-regularity of the separators and conforming to the high-
contrast interfaces. The results presented in Table �.� clearly indicate that
there is little to no payoff for the latter, unless contrasts are very high.
However it is questionable whether such a discretization and problem
formulation makes sense in these situations. Similar experiments were
carried out at various other wavenumbers up to ⇤ 64, with similar
outcome.

Elastic wave equation

To test our method on systems of partial differential equations, we apply
it to an IPDG discretization of the static elastic wave equations. The
specific type of the discretization can be found in [��, ��]. We consider
a heterogeneous problem on the square domain ⌦ ⇤ ⌦1 [⌦2, with
⌦1 ⇤ [�1, 0] ⇥ [�1, 1] and ⌦2 ⇤ (0, 1] ⇥ [�1, 1], where the material
parameters are constant in each of the respective subdomains: µ ⇤ µ1,
� ⇤ �1 in⌦1 and µ ⇤ µ2, � ⇤ �2 in⌦2. We choose µ1 ⇤ 1, µ2 ⇤ 2, �1 ⇤ 1
and �2 ⇤ 2. As the source term we choose the constant f ⇤ [0, 1]| and
we set zero Dirichlet boundary conditiones on all sides. The mesh is a
regular mesh and conforms to the interface in the center of the domain.

We test the performance of the preconditioner on the described prob-
lem under h- and p-refinement. Figure �.�� and Figure �.�� depict the
respective results which are very similar to the results obtained for the
Helmholtz problem, however with roughly double the ranks. Because
the system has two components, the problem is double the size and we

� Numerical Experiments ��

104 105 106
0

2

4

6

8

10

n

G
M

RE
S

ite
ra

tio
ns

104 105 106
0

200

400

n

m
ax

im
um

ra
nk

k m
ax

p ⇤ 1 p ⇤ 2 p ⇤ 3
Figure �.��: Preconditioner performance
for the elastic wave equations (�.�) under
h-refinement.

104 105 106
0

2

4

6

8

10

n

G
M

RE
S

ite
ra

tio
ns

0 0.5 1 1.5

·106

0

200

400

600

800

n

m
ax

im
um

ra
nk

k m
ax

h ⇤ 1/32 h ⇤ 1/64 h ⇤ 1/128
Figure �.��: Preconditioner performance
for the elastic wave equations (�.�) under
p-refinement.

have roughly the same relative ranks as in the case of the Helmholtz
problem.

Frequency-domain elastic wave equation

To test our method on more application-oriented problems, we apply it to
IPDG discretizations of the frequency-domain elastic wave equation (�.�).
It corresponds to the eigenvalue problem of the elastic wave equations.
Problems such as these arise in the context of subsurface modeling and
direct waveform inversion [�]. We consider the Marmousi II velocity
model [��], which is a common benchmark test. It models soil deposits
off the coast of Madagascar, measured using seismic imaging techniques
akin to waveform inversion. The original model is ��km wide and
�.�km deep. We use the soil portion of the model and represent it in
the computational domain⌦ ⇤ [0, 17000] ⇥ [�3500,�450]. As boundary
conditions, we choose zero Dirichlet boundary conditions gD ⇤ 0 on
the bottom and zero Neumann boundary conditions gN ⇤ 0 on the
remaining three sides. As source term we use a dipole of the form

f ⇤ (r � rs) exp
kr � rs k2

2R2 ,

where r ⇤ [x , y]| is the radius vector, rs ⇤ [�1250, 8500]| the source
location and R ⇤ 100 is the width of the dipole.

For our experiments we use two meshes. The first mesh is generated
using a segmentation of the material distributions, to conform to the
sharp interfaces in the material parameters. The other mesh is a simple,
regular mesh. We use meshes with approximately �� or �� elements

� Numerical Experiments ��

1.6
1.8
2
2.2
2.4
2.6·103

⇢

0.5
1
1.5

·1010

µ

0.5
1
1.5
2
·1010

�

Figure �.��: Material distribution of ⇢,
µ and � for the Marmousi II test case.
The domain is discretized using the IPDG
method with h ⇤ 3050/40 and p ⇤ 1.

in the vertical direction, which amounts to a total of ����� or ������
elements in the case of the conforming mesh. The elimination tree is
again generated by hierarchical subdivision, while keeping the aspect
ratio of the boxes close to one.

For the conforming mesh, the material distributions ⇢, µ and � are
approximated by piecewise constant functions in each element. Figure
�.�� depicts these material distributions on the conforming mesh. For the
regular mesh, the material distributions are approximated within the
discontinuous Galerkin function space on the mesh.

We solve the problem for two frequencies, ! ⇤ 2⇡ and ! ⇤ 8⇡. The com-
ponents ux and uy of u are shown for ! ⇤ 2⇡ in Figure �.��. Solving such

�5
0
5

·10�4

u x

�5
0
5

·10�4

u y

Figure �.��: x- and y-components of the
solution at a frequency of ! ⇤ 2⇡.

problems can be challenging as it includes many elongated high-contrast
interfaces which are typically hard to precondition. The encouraging
results in Section � indicate that we can expect good results without
having to conform to material interfaces with our nested dissection.

Figure �.�� shows the relative residual at each GMRES iteration for both
frequencies. For the purpose of comparison, we apply the incomplete
LU factorization (ILU) as a preconditioner, as it represents a popular,
general-purpose preconditioning technique. We observe that using our
method, we are able to precondition the problem and achieve a satisfying
convergence rate, while the ILU preconditioner fails. This illustrates the
robustness of the hierarchical preconditioner. The only problem-specific
knowledge that is required is a hierarchical partitioning of the domain. If
this partitioning is badly chosen, the method might fail or deteriorate due
to Schur complements not being compressible. As we have computed
the nested dissection based purely on the aspect ratio of the bounding

� Numerical Experiments ��

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

regular mesh, ! ⇤ 2⇡

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

regular mesh, ! ⇤ 8⇡

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

conforming mesh, ! ⇤ 2⇡

0 10 20 3010�12

10�6

100

GMRES iteration

re
la

tiv
e

re
sid

ua
l

conforming mesh, ! ⇤ 8⇡

p ⇤ 1, h ⇤ 3050/40, ours p ⇤ 1, h ⇤ 3050/40, ILU
p ⇤ 1, h ⇤ 3050/80, ours p ⇤ 1, h ⇤ 3050/80, ILU
p ⇤ 2, h ⇤ 3050/40, ours p ⇤ 2, h ⇤ 3050/40, ILU
p ⇤ 2, h ⇤ 3050/80, ours p ⇤ 2, h ⇤ 3050/80, ILU

Figure �.��: Performance of the precondi-
tioner compared to ILU. Number of GM-
RES iterations for ! ⇤ 2⇡ and ! ⇤ 8⇡
with non-conforming and conforming dis-
cretizations.

�: All of the following performance fig-
ures were obtained on a ���� MacBook
Pro with an Intel i� Processor clocked at
�.� GHz and ��GB of RAM.

boxes, we have demonstrated that it is quite robust, even if there are
high-contrast interfaces in the domain.

�.� Scaling and performance

One of the claims that we have made is that the approximate factorization
can be formed in quasilinear time, assuming that the ranks stay more
or less constant. We seek to validate these claims through timings of
our reasonably optimized, single-threaded J���� code. � Table �.� and
Table �.� list timings, as well as memory requirements for forming and
applying the factorization. The experiments were carried out for the two-
dimensional Poisson and Helmholtz problems respectively, on meshes
ranging from h ⇤ 1/22 to h ⇤ 1/512 with p ⇤ 1. The corresponding data
is also depicted in Figure �.��. We observe that the cost of application,
construction and memory requirements roughly double from row to
row. This is consistent with the (quasi-)linear complexity postulated
in Section �.�. With increasing problem size, a bigger portion of the

1/h n LHSS application factorization memory iters kmax
22 2904 4 0.00311 s 0.03921 s 4.8530e7 B 3 44
32 6144 5 0.00684 s 0.36351 s 1.4575e8 B 3 79
45 12150 7 0.01442 s 0.27612 s 3.5953e8 B 3 81
64 24576 7 0.05801 s 0.50404 s 8.2917e8 B 4 93
90 48600 9 0.10054 s 1.17373 s 1.8655e9 B 4 100
128 98304 9 0.41032 s 2.42477 s 3.9659e9 B 4 106
181 196566 11 0.32823 s 5.50095 s 8.4243e9 B 4 106
256 393216 11 0.64399 s 18.6995 s 1.7571e10 B 4 106
362 786264 13 1.91412 s 40.9561 s 3.6662e10 B 6 106
512 1572864 14 4.00240 s 114.050 s 7.5003e10 B 6 106

Table �.�: Factorization and application
times, as well as memory consumption for
the Poisson problem under h-refinement
in two dimensions.

� Numerical Experiments ��

10
4

10
5

10
6

10
�3

10
0

10
3

O(n)
O(n log n)O(n log

2 n)

n

ti
m

e
(s

)

10
4

10
5

10
6

10
8

10
10

O(n)
O
(n lo

g n)

n

m
e
m

o
r
y

(b
y
te

s
)

Poisson problem Helmholtz problem

Figure �.��: Timings and memory re-
quirements of the preconditioner under
h-refinement in two dimensions. The fig-
ure on the left shows factorization times
on the top and application times on the bot-
tom, while the figure on the right shows
memory requirements.

1/h n LHSS application factorization memory iters kmax
22 2904 4 0.00318 s 0.04152 s 4.9294e7 B 3 48
32 6144 5 0.00744 s 0.10067 s 1.4819e8 B 3 81
45 12150 7 0.01418 s 0.21265 s 3.6590e8 B 3 84
64 24576 7 0.03072 s 0.51274 s 8.3719e8 B 4 96
90 48600 9 0.10588 s 1.15436 s 1.9002e9 B 4 102
128 98304 9 0.12941 s 2.98963 s 3.9888e9 B 4 106
181 196566 11 0.25293 s 5.99976 s 8.6168e9 B 5 106
256 393216 11 0.64557 s 19.0612 s 1.7669e10 B 5 106
362 786264 13 1.96164 s 42.4397 s 3.6981e10 B 7 106
512 1572864 13 3.69466 s 114.259 s 7.5168e10 B 7 106

Table �.�: Factorization and application
times, as well as memory consumption
for the Helmholtz problem under h-
refinement in two dimensions.

hierarchy is processed using compressed arithmetic using both HSS and
low-rank matrices, which keeps the cost quasilinear. This comes at the
cost of potentially larger errors due to increased error accumulation,
such that GMRES iterations should also be taken into account. Moreover,
the efficiency of the method is determined by the rank growth, which
we observe to be moderate. For the last three values of h, we observe
a slight increase in the factorization time. This is likely caused by the
high memory requirement, which exceeds the memory of the machine
on which the experiments were done. As a consequence, virtual memory
is used, which comes at a performance penalty. To put matters into
perspective, Table �.� lists performance figures for the solver without
any compression, which corresponds to a direct solve exploiting the
nested dissection structure. We observe better performance with the
approximate solver, once matrices are large enough.

For wave problems it is rarely practical to just increase the wavenumber
, without also refining the mesh to ensure that the problems are well-
resolved. As we have observed in Section �.�, we expect the growth of the
off-diagonal ranks to eventually increase the cost beyond the quasilinear
complexity. This would also be in line with what other authors have
observed with similiar methods [��, ��].

Table �.� and Table �.� list performance figures for the Helmholtz

1/h n application factorization memory
22 2904 0.01844 s 0.02356 s 3.9407e7 B
32 6144 0.00600 s 0.06504 s 1.0078e8 B
45 12150 0.01295 s 0.14313 s 2.2164e8 B
64 24576 0.06674 s 0.32718 s 5.1301e8 B
90 48600 0.06614 s 0.80438 s 1.1045e9 B
128 98304 0.15046 s 1.88804 s 2.4966e9 B
181 196566 0.35345 s 4.23004 s 5.3735e9 B
256 393216 1.25417 s 18.3061 s 1.1774e10 B
362 786264 2.80405 s 52.2744 s 2.5054e10 B
512 1572864 7.44162 s 159.893 s 5.4262e10 B

Table �.�: Factorization and application
times, as well as memory consumption
using a direct solver for the Helmholtz
problem under h-refinement in two di-
mensions.

� Numerical Experiments ��

104 105 106

10�2

100

102

O(n log n)
O(n

4/3)

O(n
3/2)

n

tim
e

(s
)

104 105 106

108

1010

1012

O
(n log n)
O
(n

4/3)

n

m
em

or
y

(b
yt

es
)

h = �/� h = �/�

Figure �.��: Timings and memory require-
ments of the preconditioner under simul-
taneous - and h-refinement, keeping h
constant.

1/h n LHSS application factorization memory iters kmax
32 6144 5 0.00616 s 0.06750 s 1.4707e8 B 3 80
45 12150 7 0.01464 s 0.27935 s 3.6654e8 B 4 81
64 24576 7 0.03196 s 0.50203 s 8.4778e8 B 3 94
90 48600 9 0.06308 s 1.20064 s 1.9628e9 B 4 105
128 98304 9 0.13711 s 3.12739 s 4.1334e9 B 4 106
181 196566 11 0.26719 s 5.46857 s 9.0829e9 B 5 106
256 393216 11 0.69663 s 20.3759 s 1.9513e10 B 5 146
362 786264 13 2.11069 s 50.1623 s 4.4535e10 B 7 186
512 1572864 13 4.51857 s 151.391 s 9.7229e10 B 6 266

Table �.�: Factorization and application
times, as well as memory consumption
for the Helmholtz problem under h-
refinement, while keeping h ⇤ 1/4 con-
stant.

equation under h-refinement, where we also adapt to keep h constant.
The corresponding data is also shown in Figure �.�� and illustrates
that the cost of factorization is roughly O(n4/3). Memory requirements
appear to grow as O(n log n), with h ⇤ 1/2 requiring more memory
than h ⇤ 1/4, as expected.

Another important question concerning performance is how these meth-
ods fare for three dimensional problem. To shed some light on this, we
revisit the Poisson problem (�.�), this time on ⌦ ⇤ [0, 1]3. Problems in
three dimensions are challenging for a number of reasons. The cost of
direct methods is increased, based on the lower sparsity in three di-
mensions and increase memory requirements. For rank-based methods,
it is known that the compressibility of Schur complements decreases
considerably due to the two-dimensional nature of the separators [��].
We oberved this already in Section �.�, where we illustrated the same
admissibility condition results in more complex block-structures in three
dimensions. This means that compressed matrices have to be much larger
for the HSS compression to be effective. Consequently, we can expect
that the size of problems to be considered has to be large enough to truly
evaluate the effectiveness of such methods.

We use the adapted compression parameters ✏HSS ⇤ 10�2 and � ⇤

180(p+1)(p+2)(p+3)/6. Moreover, we switch to compressed arithmetic
only once matrices are four times larger than the HSS blocksize �. The
dissection strategy is kept the same as in two dimensions, where the

1/h n LHSS application factorization memory iters kmax
32 6144 5 0.00870 s 0.08765 s 1.4983e8 B 3 82
45 12150 7 0.01629 s 0.19147 s 3.7940e8 B 3 89
64 24576 7 0.03264 s 0.66125 s 8.7951e8 B 3 104
90 48600 9 0.07302 s 1.21613 s 2.0727e9 B 4 106
128 98304 9 0.14631 s 3.08951 s 4.7327e9 B 4 146
181 196566 11 0.39223 s 6.76212 s 1.1205e10 B 5 186
256 393216 11 0.76545 s 24.8398 s 2.5064e10 B 4 226
362 786264 13 2.29401 s 69.9011 s 6.2828e10 B 6 306
512 1572864 13 4.63122 s 225.629 s 1.4390e11 B 6 426

Table �.�: Factorization and application
times, as well as memory consumption
for the Helmholtz problem under h-
refinement, while keeping h ⇤ 1/2 con-
stant.

� Numerical Experiments ��

1/h n LHSS application factorization memory iters kmax
12 41472 1 0.52092 s 23.6715 s 1.4570e10 B 10 780
16 98304 2 1.89304 s 107.020 s 4.5474e10 B 12 971
20 192000 4 4.41101 s 415.628 s 1.3949e11 B 17 1204

Table �.�: Factorization and application
times, as well as memory consumption for
the Poisson problem in three dimensions.
These results were obtained with an IPDG
formulation.

separator is drawn in a way which keeps the aspect ratios of the resulting
meshes as balanced as possible. Table �.� lists our findings for the three-
dimensional Poisson problem. As expected, we notice that ranks are
much larger, and consequently, memory requirements quickly becomes
an issue for our sequential code. The overall cost to form the approximate
factorization seems to scale as O(n2), whereas the cost of applying it
seems to scale asO(n3/2). This would make the factorization as expensive
as classical structured elimination. These findings are hardly conclusive
however, due to memory limitations and the small size of the matrices
that we consider. Other, similar approaches that combine rank-based
approached with the structured multifrontal elimination report runtimes
that scale as O(n5/3) [��]. The overall trend is consistent with similar
rank-based approaches, which also report a decrease in the performance
when three-dimensional problems are considered [��].

�.� Codes for reproducibility

The experiments that we have shown here have been made available
online, to allow easy reproducibility. The functionality of these codes is
two-fold. The first part is to generate the problem itself. Thus we require
a code to generate the Galerkin matrix A, together with a suitable right-
hand side b and an elimination tree E derived from a nested dissection
of the computational domain. This functionality has been implemented
in Matlab using the discontinuous Galerkin library �����-�� and our
custom extension �����-��-����������, which extends the capabilities
to formulate continuous Galerkin problems, generate elimination trees
using nested dissection and more. The second part is the approximate
solver itself, which requires a library for dealing with HSS matrices, as
well as the implementation of the solver. We have developed both M�����
and J���� implementations for this. Our M����� implementation �������
uses the hierarchical matrix library ��-������� for HSS arithmetic [��].
The J���� implementation of the preconditioner, H�����������S������.��
is reasonably optimized and makes use of the library H��M�������.��, for
HSS matrix arithmetic. An overview of the aforementioned

software and their availability online:
github.com/tcew/nodal-dg
github.com/bonevbs/nodal-dg-
extension
github.com/bonevbs/HssMatrices.jl
github.com/bonevbs/HierarchicalSolvers.jl
github.com/numpi/hm-toolbox
github.com/bonevbs/hprecon

To reproduce the experiments, problems can be generated by using
the respective M����� codes. To generate a Helmholtz problem with
1/h ⇤ 64, p ⇤ 1 and a wavenumber of ⇤ 32 on the square domain, we
can run:
GenMatrixHelmholtz2D("test.mat", 64, 1, 32, "square", 10)

This will generate the Galerkin matrix A, a suitable right-hand side b

and a nested dissection elimination tree E with leaves not bigger than ��
elements. A, b and E are then stored in "test.mat". To solve the problem
using the approximate solver we can open it in J���� using the routine
read_problem:

https://github.com/tcew/nodal-dg
https://github.com/bonevbs/nodal-dg-extension
https://github.com/bonevbs/nodal-dg-extension
https://github.com/bonevbs/HssMatrices.jl
https://github.com/bonevbs/HierarchicalSolvers.jl
https://github.com/numpi/hm-toolbox
https://github.com/bonevbs/hprecon

� Numerical Experiments ��

using HierarchicalSolvers
A, b, nd = read_problem("test.mat")

Forming the factorization is then as straight-forward as running:
nd, nd_loc = symfact!(nd)
F = factor(A, nd, nd_loc, swlevel=-4, atol=1e-6, rtol=1e-6);

This constitutes a symbolic factorization step and a second step in
which we form the actual, approximate factorization. Here, swlevel
determines the depth of the hierarchy LHSS. A negative value indicates a
depth determined relative to the overall depth of the nested dissection
hierarchy. To do an approximate solve using the factorization, we can
then run:
x = F\b

Of course we are more interested in applying it as a preconditioner. Using
the IterativeSolvers package, we can use it as a right preconditioner for
GMRES:
using IterativeSolvers
x = gmres(A, b; Pr=F, reltol=1e-9, restart=30, maxiter=30)

�.� Concluding remarks

We have presented a method for computing an approximate factorization
of Galerkin matrices arising from finite element type discretizations of
elliptic PDEs. To make this approach efficient, rank-structured matrices,
and in particular HSS matrices were used to compress the dense fill-in
that occurs during factorization. We were particularly interested in the
performance of such techniques when used as a preconditioner.

We were able to verify the quasilinear complexity of the preconditioner
for two-dimensional prroblems using numerical experiments. We have
observed that three-dimensional problems still pose significant challenges
to these methods due to the increase in ranks which aversely affects the
performance of rank-based methods. For two-dimensional problems we
were able to investigate the scaling behavior for both h- and p-refinement.
We saw that ranks grow roughly logarithmically with respect to the
number of degrees of freedom when h-refinement is performed. For
p-refinement this growth is roughly linear. Both of these observations are
consistent with theoretical results. Moreover, we have investigated the
effect of highly oscillatory problems. While increasing the wavenumber
typically leads to an increase in the ranks, we observe that the method is
robust in the sense that solutions are still computed accurately and fast.
Finally we have tested our method on heterogeneous problems, where
it performed equally robustly, without the need of adapting it to the
geometry.

As with any work there are still open questions. The main questions
here are whether the performance in three dimensions improves if large
enough problems are considered. This might require more efficient
implementations and, in particular, parallel codes. Another important
question regarding three-dimensional problems is whether other rank-
structured formats offer performance benefits over HODLR and HSS
formats.

D������������ G������� ������� ���
��� S������ W���� E��������

Figure �.�: The Great Wave off Kamigawa.
Depiction of a Tsunami by Hokusai. Pic-
ture taken from Wikimedia commons.

Motivation �
�.� The shallow water equations ��

In one dimension ��
On the sphere ���

�.� A simple scheme ���
Finite volume scheme ���
The numerical flux ���

In the first part of this work we already saw the introduction of the linear
wave equation (�.�). In this second part, we are concerned with numerical
methods for solving the shallow water equations (SWE). Both the linear
wave equation and the shallow water equations belong to the broader
class of problems known as conservation laws and hyperbolic partial
differential equations [�, ��]. As the name implies, conservation laws
are the mathemmatical expression of phenomena involving conserved
quantities and their transport [��–��]. This includes a wide range of
real-world phenomena ranging from fluid dynamics to traffic flow, with
many applications in engineering and science.

Conservation laws can generally be expressed as initial value problems
in the following way:

Problem �.�.� (Initial value problem) For a spatial domain x 2 ⌦
and temporal domain t 2 (0,1), find a suitable solution q ⇤ q(x , t) :
⌦ ⇥ (0,1)! Rm which satisfies

@t q + r · F(q) ⇤ S(x , q) in⌦ ⇥ (0,1) (�.�a)
q ⇤ q0 on⌦ ⇥ {t ⇤ 0} , (�.�b)

comprising m conservation laws, an initial condition q0 : ⌦ ! Rm

and suitable boundary conditions on @⌦, which will be specified when
necessary. F(q) and S(x , q) are suitable flux and source functions, and
are specified independently for each problem.

The scalar wave equation (�.�) can be expressed in this form by setting
q ⇤ u, F(q) ⇤ ±cu and S ⇤ f .

The development of methods for solving these PDEs numerically has
been a field of intense study. Various numerical methods such as finite
difference methods, spectral methods and finite volume methods have
been studied extensively with the purpose of efficiently solving these
problems [��, ��, ��]. Our focus is on developing discontinuous Galerkin
(DG) methods for the shallow water equations. These methods are
an interesting option as they combine high-order accuracy with the
geometric flexibility that typically comes from lower-order methods [��,
��, ��]. As such, they offer favorable properties to create computational
models based on the shallow water equations. Such models are invaluable
to study flooding, extreme weather events, and ocean phenomena such
as tsunamis. We aim to create a model capable of simulating large-scale
tsunami events accurately and efficiently, so that it may be used as an
early warning system.

With this in mind, we formulate the shallow water equations on the
surface of the sphere and account for the effects of curvature and rotation.
Designing a numerical scheme for these equations is a challenging task
in itself [��]. Physical accuracy further demands the scheme to be well-
balanced, so that it conserves a certain stationary solution where the

https://commons.wikimedia.org/wiki/File:Tsunami_by_hokusai_19th_century.jpg

� Motivation ��

water is at rest [��–��]. In the context of tsunami simulations, this is
particularly important, as initial conditions are in general a perturbation
of this steady-state solution. The final challenge is wetting/drying, which
refers to the appearance of dry areas in the solution and associated
numerical problems. This requires the development of methods which
are capable of handling wet-dry transitions in a robust manner, which
does not compromise our well-balanced scheme.

The solutions to the aforementioned challenges are not necessarily
restricted to our treatment of the discontinuous Galerkin method for
the spherical shallow water equations. It does however serve as a good
model problem as we will see later on. To lay the foundations for this,
we introduce the shallow water equations in Section �.� and construct a
simple finite volume scheme to solve them numerically in Section �.�.

�.� The shallow water equations

In one dimension

Before we move on to a discussion on methods, let us introduce the
shallow water equations. This name can often be misleading as they are
frequently used for tsunami modelling, which involves the simulation of
ocean waves in open waters at depths of up to 11km. At the same time,
they are often used to model weather events, modelling the large-scale
dynamics of atmospheric layers as opposed to modelling water. The
name “shallow water equations” comes from the assumption that the the
vertical depth of the fluid is small compared to the horizontal dimensions
and the wavelengths being studied. Under these assumptions, once
can assume the vertical dynamics to be negligible. This is also referred
to as hydrostatic balance, as vertical pressure gradients are balanced by
gravity. We can then eliminate the vertical velocity component of the
Euler equations by integrating them in the vertical direction [��]. In one
dimension, the result are the shallow water equations

@t h + @x(hu) ⇤ 0 (�.�a)

@t(hu) + @x(hu2
+

1
2

gh2) ⇤ �gh@x b (�.�b)

for a suitable domain⌦ ⇤ [x0 , x1] ⇢ R. The unknown solution consists
of the total column height h, measured from the bottom of the seabed,
and the so-called discharge hu which is the product of the water column
height and the average horizontal velocity of the fluid. b is the height
of the bottom topography measured with respect to an equipotential
surface of the gravitation field (geoid). The sea surface level with respect
to the geoid is therefore given by h + b. Finally, g denotes the vertical
acceleration due to gravity. The terminology of the shallow water problem
is depicted in Figure �.�.

It is no surprise that the shallow water equations (�.�a) are functionally
equivalent to the isothermal compressible Euler equations. As previously
mentioned, we can derive them by depth-integration. In the resulting
equations, the water depth acts as a density and the discharge can
therefore be understood as the momentum. In this view, the bottom

� Motivation ���

x

z

�b h

h + b Geoid

Topography

Surface Elevation

u

Figure �.�: Illustration of the assumptions
for the shallow water equations in one
dimension.

�: We loosely speak of wave speeds
throughout this chapter. By this we refer
to the phase velocity.

�: We omit any discussion regarding ap-
propriate solution spaces and refer the
reader to [�, ��].

topography acts as pressure field and we can identify the source term to
act like the pressure gradient.

To write the shallow water equations as a conservation law, we notice
that we could have identically written (�.�a) as

@t

h

hu

�
+ @x

hu

hu2
+ 1

2 gh2

�
⇤

0

�gh@x b

�
, (�.�)

and equivalently (assuming sufficient regularity), we can write

@t

h

hu

�
+

0 1

�u2
+ gh 2u

�
| {z }

⇤J
F
(q)

@x

h

hu

�
⇤

0

�gh@x b

�
. (�.�)

In the latter, we have introduced the Jacobian J
F
(q) of the flux function

F(q) to rewrite the equations in a form that is similar to the linear wave
equations. We will see that linearizing the equations indeed yields the
eigenvalues of the flux jacobian as wave speeds. �

To make the equations dimensionless, we multiply (�.�) by g and in-
troduce the geopotential water column height ' ⇤ gh, as well as the
geopotential topography ⌧ ⇤ gb. We can then write the unknown
solution as

q ⇤

'
'u

�
(�.�)

and specify the flux F : R2 ! R2 and source S : ⌦ ⇥R2 ! R2 as

F(q) ⇤

'u
'u2

+ 1
2'

2

�
(�.�)

and
S(x , q) ⇤

0

�'@x⌧

�
. (�.�)

It should be clear that physical solutions only permit positive water
heights ' � 0. Moreover, the shallow water equations are a system of
non-linear equations, which allows for shock-formation [��]. � As we
have assumed that we can describe the layer of water by a function, we
expect the shallow water equations to fail in the description of breaking
waves as depicted in Figure �.�.

To develop numerical schemes for solving the shallow water equations,
it is useful to study their characteristics. To do so, we look for a curve

� Motivation ���

xc(t) such that the solution is constant along this curve, i.e.

d
dt

q(xc(t), t) ⇤ 0

⇤) q(xc(t), t) ⇤ q0(xc(0)).

This yields
@t q(xc(t), t) + @t xc(t) @x q(xc(t), t) ⇤ 0,

and by comparing it to (�.�), we notice that for a vanishing source term,
this equation is satisfied if

J
F
(q(xc(t), t)) @x q(xc(t), t) ⇤ @t xc(t) @x q(xc(t), t). (�.�)

In other words, xc(t) is a characteristic curve, i.e., the solution is constant
along xc(t), if @t xc(t) is an eigenvalue of the flux Jacobian J

F
(q). It is

easy to show that the eigenvalues of J
F
(q) are given by

↵± ⇤ u ± p'. (�.�)

↵± is also called the wave speed of the system as small perturbations of
the solution travel at these speeds across the physical domain. Unlike
elliptic PDEs, hyperbolic PDEs are characterized by the finite speeds at
which information propagates.

As previously noted, many conservation laws permit the formation and
propagation of shock waves, that is, solutions that are not continuously
differentiable. Properly defined, such solutions are called weak solutions
and need to be allowed to make the problem well-posed [�]. Without
going into the details, we remark that this is an important property to
keep in mind and is often a prime factor in the development of numerical
schemes [��].

On the sphere

We are interested in modelling large-scale atmospheric and oceanic phe-
nomena, which can be described by formulating the shallow water equa-
tions on the sphere. We skip the discussion of the two-dimensional shal-
low water equations and formulate them directly on the two-dimensional
sphere x 2 S2(R) ⇢ R3 of radius R. To do so, we are presented with the
choice of a suitable coordinate system. While the natural choice seems to
be spherical coordinates, it is well-known that the coordinate singular-
ities that are introduced at the poles pose a challenge for construction
of numerical schemes [��]. An alternative way of using coordinates that
conform to the sphere is to use a covariant formulation, directly on local
coordinate systems introduced by the discretization [��]. Finally, there
is also the possibility of avoiding conforming coordinates altogether
and instead use Cartesian coordinates. This requires us to constrain the
velocity vectors to the surface of the sphere, which can be done by using
a Lagrangian forcing term.

We adopt the latter approach as presented in [��]. This approach comes
at the cost of an additional state variable as we have to take three-
dimensional velocities u ⇤ [u , v , w]|. The state vector is therefore

� Motivation ���

four-dimensional:

q ⇤

26666664

'
'u
'v
'w

37777775
⇤

'
'u

�
. (�.��)

To write the spherical shallow water equations as a conservation law

@t q + r · F(q) ⇤ S(x , q), (�.��)

we introduce the flux function

F(q) ⇤ fx(q) êx + fy(q) êy + fz(q) êz

⇤

26666664

'u
'u2

+ 1
2'

2

'uv
'uw

37777775
êx +

26666664

'v
'uv

'v2
+ 1

2'
2

'vw

37777775
êy +

26666664

'w
'uw
'vw

'w2
+ 1

2'
2

37777775
êz , (�.��)

where êx , êy and êz are the unit vectors along the coordinate axes in R3.
The above notation has to be understood in the sense that scalar-products
with three-dimensional, Cartesian vectors act on the unit vectors. In
particular, this implies

r · F(q) ⇤ @x fx + @y fy + @z fz . (�.��)

The source term
S ⇤

0
S̃

�

only acts on the momentum equations via

S̃(x , q) ⇤ C(x , u) � 'r⌧(x) + µx. (�.��)

The first term is the Coriolis force

C(x , u) ⇤ �2!z'

R2 x ⇥ u (�.��)

induced by the rotation of the sphere, where ! is the angular velocity of
the rotation. Here we have chosen the z-axis to be the axis of rotation for
the sphere. The second term in (�.��) accounts for the pressure gradient
caused by the slope of the bottom topography ⌧ ⇤ gb(x). Finally, to
ensure that the fluid does not escape into space, we need to enforce u

to remain tangential to the surface of the sphere. This is done via the
Lagrange multiplier

µ(x , q) ⇤ 1
R2 x · �'r⌧ + r · F̃

�
, (�.��)

which projects out any non-tangential change in 'u. Here, F̃ denotes the
three last components of F acting on the momentum equations.

�.� A simple scheme

Let us return to the one-dimensional shallow water equations, with
the goal of constructing a simple scheme for solving them. We already

� Motivation ���

mentioned that one of the main challenges for the numerical solution of
conservation laws is the formation of shocks and the resulting lack of
regularity in the solution. A natural way of dealing with this problem is by
considering an integral formulation of the problem. To do so, we identify
a function space Vh in which we look for numerical approximations to
the solution qh . We require the residual of the numerical solution

@t qh + r · F(qh) � S(x , qh) (�.��)

to be orthogonal to Vh , which yields the formulation

8vh 2 Vh :
π
⌦
(@t qh + r · F(qh) � S(x , qh)) vh dx ⇤ 0. (�.��)

This formulation is almost the weak formulation of the problem, with
the important difference that there is no time-dependence in the test
functions vh . Instead, we separate the temporal discretization from the
discretization in space. This kind of approach is known as method of
lines.

Finite volume scheme

The important class of finite volume schemes can be derived by choosing
Vh to be space of piecewise constant functions. To do this, we divide the
spatial domain⌦ ⇤ [x0 , x1] into K non-overlapping cells

Dk
⇤ [xk�1/2 , xk+1/2], (�.��)

such that

⌦ ⇡ ⌦h ⇤

K[
k⇤1

Dk . (�.��)

Here we have introduced the computational domain⌦h which approxi-
mates the spatial domain⌦. The index h, which referes to the dependence
of the numerical solution on the spatial discretization is defined as

h ⇤ sup
k

diam Dk , (�.��)

and indicates the accuracy of the approximation. We construct the space
of piecewise constant functions as

Vh ⇤

n
v 2 L2(⌦) : 8Dk , v |Dk ⇤ const.

o
. (�.��)

By inserting this into (�.��) and assuming that the source term is 0, we
get

8k : @t

π
Dk

q dx ⇤ �[F(q)]xk+1/2
xk�1/2

(�.��)

after integration by parts. This expresses that mass and momentum are
conserved across elements. To obtain the finite volumes scheme, we
approximate q using cell averages in each cell. The piecewise constant
functions

'k(x) ⇤
(

1 xk�1/2 x < xk+1/2

0 otherwise
(�.��)

� Motivation ���

serve as a basis for Vh . This allows us to write the numerical solution as

qh(x , t) ⇤
KX

k⇤1
q̂

k(t)'k(x). (�.��)

The unknown coefficients q̂
k(t) then represent the cell-averages of mass

and momentum in each cell. Inserting the numerical solution qh into
(�.��) yields

8k : @t q̂
k
⇤ � 1

|Dk |
[F(qh(x , t))]

xk+1/2
xk�1/2

(�.��)

Using a forward Euler discretization in time, we get

8k : q̂
k ,n+1

⇤ q̂
k ,n � �t

|Dk |
⇥
F(qh(x , tn))

⇤ xk+1/2
xk�1/2

(�.��)

where q̂
k ,n

⇤ q̂(tn).

The numerical flux

We notice that the evaluation of the flux function in (�.��) is ambiguous
due to potentially different value of qh at the interfaces xk+1/2 , xk�1/2. The
important observation by Godunov [��] was that solving this problem is
akin to solving the Riemann problem

@t q + r · F(q) ⇤ S(x , q) (�.��a)

q(x , tn) ⇤
(

q̂
k(tn) x < xk+1/2

q̂
k+1(tn) x > xk+1/2

(�.��b)

for t 2 (tn , tn+1) [��]. Schemes that solve this problem analytically at each
interface are called Godunov schemes. Unfortunately, doing this is a non-
linear operation and can be quite costly depending on the considered
conservation law. For the shallow water equations for instance, the
Riemann problem can have three types of elementary waves, which have
to be taken into consideration [��].

An alternative approach is to introduce an approximate numerical flux
function

F(qh)
��
xk+1/2

⇡ F
⇤(q̂k , q̂

k+1), (�.��)

which takes both solutions at the interface into account. In this way, the
numerical flux will be communicating the information between cells. We
can for instance use the local Lax-Friedrichs flux

F
⇤(q̂k , q̂

k+1) ⇤ 1
2

⇣
F(q̂k) + F(q̂k+1)

⌘
� ↵

2

⇣
q̂

k+1 � q̂
k
⌘
, (�.��)

which uses the maximum local eigenvalue

↵ ⇤ max{|ûk | +
p
'̂k , |ûk+1 | +

p
'̂k+1} (�.��)

of the flux Jacobian. It is worth noting that the numerical flux is consistent
with the exact flux function, i.e. the numerical flux becomes exact as the

� Motivation ���

�: The difference between the Rusanov
and Lax-Friedrichs scheme is the choice of
wave speeds. If the wave speeds are cho-
sen locally, based on the solution at both
sides, we call the flux a Rusanov or local
Lachs-Friedrichs flux. If instead the global
maximum is considered, the scheme is
called the Lax-Friedrichs scheme. The use
of the globally maximal wavespeed intro-
duces more dissipation into the scheme.

discontinuity at the interface vanishes:

F
⇤(q , q) ⇤ F(q). (�.��)

The Lax-Friedrichs flux greatly simplifies the evaluation of the flux at
interfaces. The disadvantage of such methods is that they introduce
additional dissipation into the scheme [��, ��]. Inserting the numerical
flux into (�.��) gives us the Rusanov scheme � for the one-dimensional
shallow water equations:

q̂
k(tn+1) ⇤ q̂

k(tn) � �t
|Dk |

⇣
F
⇤(q̂k , q̂k+1) � F

⇤(q̂k�1 , q̂k)
⌘
. (�.��)

Due to the added dissipation, this scheme is inferior to Godunov schemes.
However, it serves as a baseline for the schemes that we are going to
construct in latter chapters. Before we move on, we remark that the
waves of nearby Riemann problems could interact if the timestep �t is
too large. We avoid this by imposing the Courant-Friedrichs-Levi (CFL)
condition

max
k
↵
�t
|Dk |

 1
2
. (�.��)

The discontinuous Galerkin
method ��

��.� In one dimension ���
��.� On the Sphere ���
��.� A few words on meshes . . . ���
��.� Time integration ���

The main motivation for developing schemes that differ from finite
volume schemes is to acquire better higher-order convergence rates.
This is possible because solutions are mostly regular apart from some
localized areas in which they have discontinuities. This has lead to the
development of higher order finite difference and finite volume schemes
such as the essentially non-oscillatory (ENO) schemes [��, ��], as well as
the discontinuous Galerkin method, among others. The discontinuous
Galerkin method offers a number of advantages over other methods, i.e.
geometric flexibility and improved parallel efficiency [��, ��, ��].

In this chapter we introduce the discontinuous Galerkin model for solving
the spherical shallow water equations (�.��). In order to introduce the
discontinuous Galerkin method and techniques related to well-balancing
and wetting/drying, we focus on the one-dimensional version of the
scheme before moving on to the spherical case.

��.� In one dimension

As for the finite volume discretization of the shallow water equations,
we proceed by separately discretizing the scheme in space and in time.
To do so, we reuse the discretization of the finite volume method and
use Dk

⇤ [xk�1/2 , xk+1/2]. Unlike the finite volume solution, which was
represented by a piecewise constant solution, we seek higher-order
accuracy by representing the numerical solution qh as a piecewise
polynomial of order p. Formally we write

qh 2 Vh(⌦) ⇤
�

v 2 L2(⌦) : 8Dk , v |Dk 2 Pp(Dk)

, (��.�)

with Vh(⌦) being the finite element space in which we seek solutions.
Then, we can express the numerical solution as the direct sum

q(x , t) ⇡ qh(x , t) ⇤
KM

k⇤1
q

k
h(x , t), (��.�)

where q
k
h(x , t) 2 Pp(Dk) is the local polynomial approximation to the

solution in each element Dk . Theoretically, it is possible to choose a
different polynomial degree p in each element. This is referred to p-
adaptivity. For our applications, we stick to a single polynomial degree
for all cells.

To represent the numerical solution q
k
h(x , t), we require a polynomial

basis which spans Vh . Here, we can choose between modal and nodal
representations. The former offer some advantages for the evaluation
of the integrals and associated matrices. Nodal approaches on the other
hand, offer geometrical flexibility and are usually easier to construct and
evaluate.

�� The discontinuous Galerkin method ���

�: We use the tall letter Lk
i (x), as well as

the variable x to distinguish between the
local basis function in Dk and li(⇠) in the
reference element.

We choose the latter and construct a basis on the reference element
I ⇤ [�1, 1]. We consider the Lagrange basis functions

li(⇠) ⇤
p+1Y

j⇤1, j,i

⇠ � ⇠ j

⇠i � ⇠ j
, (��.�)

which are defined on a set of interpolation points {⇠i}
p+1
i⇤1 ⇢ [�1, 1]. The

nodal basis has the useful property

li(⇠ j) ⇤ �i j , (��.�)

which allows easy evaluation of the function on the interpolation points.
Thus we require a set of points {⇠ j}

p+1
j⇤1 ⇢ I with favorable properties for

interpolation [��]. A common choice are the Legendre-Gauss-Lobatto
(LGL) points. We omit the construction of the LGL points and instead
refer the reader to [��]. To construct a basis in the element Dk , we map
the points {⇠ j}

p+1
j⇤1 via an affine transformation to Dk . This yields the

local points {xk
j }

p+1
j⇤1 , from which we can construct a local basis in the

sense that
Lk

i (x) ⇤ li(⇠(x)), (��.�)

where ⇠(x) is the affine transformation from Dk into the I. �

Having constructed the local polynomial bases, we can now represent
the numerical solution locally as

q
k
h(x) ⇤

p+1X
i⇤1

q̂
k
i (t) Lk

i (x), (��.�)

where q̂
k
i are the unknown coefficients associated with the solution at

each point xi . In a similar fashion, we express numerical approximations
of the flux Fh(q(x)) and the bottom topography ⌧h(x):

Fh(q(x , t))
��
Dk ⇤ F

k
h (x) ⇤

p+1X
i⇤1

F(q̂k
i (t)) Lk

i (x), (��.�)

⌧h(x)
��
Dk ⇤ ⌧k

h(x) ⇤
p+1X
i⇤1
⌧(xk

i) Lk
i (x). (��.�)

We are now ready to re-consider the variational formulation (�.�a). By
restricting the test function space to Vh(⌦), we obtain

8k , i :
π

Dk
(@t qh � F(qh) @x) Lk

i (x)dx

⇤ �
h
F(qh) Lk

i (x)
i xk+1/2

xk�1/2
+

π
Dk

S(x , qh) Lk
i (x)dx

within each cell. This brings us back to the problem of evaluating the
ambiguous flux [F(qh) v(x)]xk+1/2

xk�1/2
at each cell interface. As for the finite

volume scheme, we overcome this by inserting a numerical flux function

F(q)
��
xk+1/2

⇡ F
⇤(qk

h(xk+1/2), q
k+1
h (xk+1/2)), (��.�)

which takes both solutions at the interface into account. To keep things

�� The discontinuous Galerkin method ���

simple, we stick to the Rusanov flux (�.��). This gives us the so-called
weak form of the discontinuous Galerkin formulation

8k , i :
π

Dk
(@t qh � F(qh) @x) Lk

i (x)dx

⇤ �
h
F
⇤(q�h , q+

h) Lk
i (x)

i xk+1/2

xk�1/2
+

π
Dk

S(x , qh) Lk
i (x)dx. (��.��)

The short-hand notation q
�
h refers to the solution on the left side of

the interface, whereas q
+

h refers to the solution at the right side of the
respective interface. An alternative, albeit equivalent formulation is the
strong form, which is obtained by integrating the volume integral by
parts:

8k , i :
π

Dk
(@t qh � @xF(qh)) Lk

i (x)dx

⇤

h �
F(q�h) � F

⇤(q�h , q+

h)
�

Lk
i (x)

i xk+1/2

xk�1/2
+

π
Dk

S(x , qh) Lk
i (x)dx.

(��.��)

Although these formulations are equivalent up to this point, they are not
equivalent once further terms are replaced by approximations and inte-
grals are solved by quadrature. This plays a key role in the construction
of the well-balanced scheme, which is discussed in Chapter ��.

We replace the solution, flux and source terms by their numerical ap-
proximations (��.�), (��.�) and (��.�), which are effectively interpolated
representations. Replacing them yields

8k , i :
p+1X
j⇤1
@t q̂

k
i

π
Dk

Lk
i (x)Lk

j (x)dx �
p+1X
j⇤1

F(q̂k
j)

π
Dk

Lk
j (x)@xLk

i (x)dx

⇤ �
h
F
⇤(q�h , q+

h) Lk
i (x)

i xk+1/2

xk�1/2
+

p+1X
j⇤1

q̂
k
j ⌧(xk

j)ê2

π
Dk
@xLk

j (x) Lk
i (x)dx.

(��.��)

for the weak form and alternatively, for the strong form

8k , i :
p+1X
j⇤1
@t q̂

k
i

π
Dk

Lk
i (x)Lk

j (x)dx +

p+1X
j⇤1

F(q̂k
j)

π
Dk

Lk
j (x)@xLk

i (x)dx

⇤

h �
F(q�h) � F

⇤(q�h , q+

h)
�

Lk
i (x)

i xk+1/2

xk�1/2

+

p+1X
j⇤1

q̂
k
j ⌧(xk

j)ê2

π
Dk
@xLk

j (x) Lk
i (x)dx. (��.��)

At this point, we have obtained semi-discrete formulations which are
systems of ordinary differential equations that need to be integrated
in time. It is also common to introduce notations for the matrices that
arise in this formulation. We forego this step as we are mostly interested
in integrating these equations explicitly and a formulation involving
matrices is therefore unnecessary for our discussion. Instead, we simply
remark that the final form of the schemes can be obtained by using the
explicit time-integration techniques which we introduced in Section ��.�.

�� The discontinuous Galerkin method ���

�1 �0.5 0 0.5 1
0.5

1

1.5

x

h
+

b
p ⇤ 0, K ⇤ 10

�1 �0.5 0 0.5 1
0.5

1

1.5

x

h
+

b

p ⇤ 0, K ⇤ 20

�1 �0.5 0 0.5 1

0.5

1

1.5

x

h
+

b

p ⇤ 1, K ⇤ 10

�1 �0.5 0 0.5 1
0.5

1

1.5

x

h
+

b

p ⇤ 1, K ⇤ 20

Figure ��.�: Comparison of the finite vol-
ume scheme to the discontinuous Galerkin
scheme for the standing wave solution
of the shallow water equations. The red
curve is the analytical solution, and the
curves in blue represent the numerical
solutions.

Finally, the evaluation of the volume integrals requires either the use of
analytic integration or numerical quadrature formula [��, ��, ��]. In one
dimension, this is straight-forward as we are integrating polynomials on
a compact interval of the real axis. To do this numerically, we can use
quadrature formulae for the LGL points, which are exact for integrants
of polynomial order up to 2p � 1 [���]. For our one-dimensional example,
this is the case, considering that the bottom topography is represented in
the chosen finite element space.

We make a simple comparison of the discontinuous Galerkin scheme
(p ⇤ 1) to the finite volumes scheme (p ⇤ 0). For a standing wave solution,
depicted in Figure ��.�, we compare the results after one oscillation for
meshes with K ⇤ 10 and K ⇤ 20 elements. As expected, we observe
that the discontinuous Galerkin scheme yields much more accurate
solutions. Moreover, we note that the amplitude is underestimated with
the finite volume scheme. This can be explained with the larger jumps
at the cell interfaces and the associated increase in dissipation from
the numerical flux. This situation is considerably improved with the
piecewise linear approximations of the discontinuous Galerkin solution.
Another important observation is that we can be achieve a higher accuracy
with a lower number of degrees of freedom, due to the smoothness of
the solution. The cases p ⇤ 1, K ⇤ 10 and p ⇤ 0, K ⇤ 20 have the
same number of degrees of freedom but the former leads to a better
approximation of the analytical solution.

��.� On the Sphere

We consider again the formulation of the discontinuous Galerkin scheme,
this time in two-dimensions and for the shallow water equations on the
sphere. Ultimately, this will result in the Runge-Kutta discontinuous
Galerkin scheme as presented in [��], which will serve as the basis for
our model for large-scale geophysical flows [�].

�� The discontinuous Galerkin method ���

x

z
y

Dk

⇠

⌘

I⇠ ⇤ (x)

x ⇤ �1(⇠)

(�1,�1)

(�1,+1) (+1,+1)

(+1,�1)
Figure ��.�: Transformation into the ref-
erence element.

�: For the sake of clarity, we drop the
superscript “k”. Typically it is clear from
the context that we refer to the current
element.

As done above, we express the physical domain⌦ by a union of smaller
elements. To do so, we discretize the sphere into a collection M of non-
overlapping quadrilateral, curvilinear elements Dk 2M such that⌦ ⇡
⌦h

SK
k⇤1 Dk . How this can be achieved in practice is explained in Section

��.�. We represent the numerical solution as qh(x , t) ⇤
LK

k⇤1 q
k
h(x , t). To

construct a basis for each element, we introduce the two-dimensional
reference element I ⇤ [�1, 1]2. Then, for each element, there exists a
bĳective map : Dk ! I which maps coordinates x 2 Dk in the physical
domain to coordinates ⇠ ⇤ [⇠, ⌘]| ⇤ (x) 2 I on the reference element.
Figure ��.� shows an illustration of both elements and the mapping
between them. Using this map we can construct a basis on I and then
map it to Dk . Using the one-dimensional Lagrange polynomials (��.�)
defined on the LGL points on [�1, 1], we form a tensor product-basis of
the form

Lm(⇠) ⇤ li(⇠)l j(⌘), (��.��)

where m ⇤ 1, 2, . . . , (p + 1)2 is a unique multiindex associated to each
node ⇠m ⇤ (⇠i , ⌘ j) with indices i , j ⇤ 1, 2, . . . , p + 1. As we can represent
any two poynomials of order up to p in each variable, we have formed a
polynomial basis of mixed order up to 2p. This allows us to represent
the numerical solution as

q
k
h(x , t) ⇤

(p+1)2X
m⇤1

q̂
k
m(t)Lm(x)

⇤

p+1X
i⇤1

p+1X
j⇤1

q
k
h(x(⇠i , ⌘ j), t)li(⇠(x))l j

�
⌘(x)� (��.��)

using the nodal values q̂
k
j (t) ⇤ q

k
h(xk

j , t). With a slight abuse of notation,
we will use Li(x) to denote Li(⇠(x)) and similarly xi ⇤ x(⇠i). � In
this formulation, we do not explicitly define the finite element space
Vh(⌦,M), as it is implicitly defined through the construction of the basis
functions. Due to the transformation onto the sphere, the functions in Vh
are only piecewise polynomials on the reference elements.

With the polynomial representation in place, we consider the problem
of satisfying the conservation law (�.�a). We write the weak form of the
discontinuous Galerkin formulationπ

D
(@t qh � Fh · r � Sh) Li dx ⇤ �

π
@D

n̂ · F
⇤
h Li dx , (��.��)

which should be satisfied by qh in each element D 2M and for every
basis function Li . Alternatively, we can use the strong form of the

�� The discontinuous Galerkin method ���

�: Due to the operators arising in two
dimensions, the strong form is also often
referred to as the divergence form. Similarly,
the weak form is referred to as Green’s form.

Galerkin formulation, asπ
D
(@t qh + r · Fh � Sh) Li dx ⇤

π
@D

n̂ · (Fh � F
⇤
h) Li dx (��.��)

to be satisfied by for each element D 2 M and for each Li . As in the
one-dimensional case, (��.��) is obtained by integrating (��.��) by parts.
� In both equations, we introduced polynomial approximations for the
flux

Fh(qh) ⇤
(p+1)2X

j⇤1
F(qh(x j)) Lj(x), (��.��)

and source term

Sh(x , qh) ⇤
(p+1)2X

j⇤1
S(x j , qh(x j)) Lj(x). (��.��)

As in the one-dimensional case, our solution space Vh is discontinuous
and we require a suitable numerical flux F

⇤, which connects the solutions
in the individual elements through a single-valued flux. We do this by
evaluating the Rusanov flux

F
⇤ �

q
�
h , q

+

h
�
⇤

1
2
�
Fh(q�h) + Fh(q+

h)
� � ↵

2
�
q
+

h � q
�
h
�
, (��.��)

on each boundary node, with q
�
h representing the local solution within the

element and q
+

h the solution in the neighboring element. To construct the
numerical representation F

⇤
h
�
q
�
h , q

+

h
� ⇡ F

⇤ �
q
�
h , q

+

h
�
, we interpolate these

values using the basis function on the boundary nodes. The wavespeed ↵
represents the maximum local wave speed across the element boundary
and it is obtained as

↵ ⇤ max
⇢��n̂ · u

�
h

�� +q
'�h ,

��n̂ · u
+

h

�� +q
'+

h

�
. (��.��)

We project the numerical flux onto the normals of the element edges n̂,
effectively evaluating the flux through the edge n̂ · F

⇤
h .

To complete the scheme, we require numerical integration techniques
to evaluate the integrals over curved elements in (��.��) and (��.��). To
do so, we construct quadrature rules QD and Q@D which approximate
the volume and surface integrals on D and @D. We approximate volume
integrals of an integrable function g 2 L1(D) on the curved element with
the quadrature formula

π
D

g(x)dx ⇤

π
I

g(⇠)JD(⇠)d⇠

⇡
p+1X
i⇤1

p+1X
j⇤1

g(⇠i , ⌘ j)JD(⇠i , ⌘ j)!i! j C QD
⇥
g(x)

⇤
, (��.��)

where JD(⇠) is the determinant of the Jacobian of �1(⇠). Here, !i and
! j are the quadrature weights associated to the Legendre-Gauss-Lobatto
nodes ⇠i , ⌘ j [���]. We remark that the scheme in two dimensions also
requires a quadrature formula for the surface integrals. LGL nodes
provide quadrature points at the edges of the reference element, which

�� The discontinuous Galerkin method ���

simplifies the construction of a quadrature rule for these integrals:
π
@D

g(x)dx ⇤

π
@I

g(⇠)J@D(⇠)d⇠

⇡
p+1X
i⇤1

g(⇠i ,�1)J@D(⇠i ,�1)!i +

p+1X
j⇤1

g(1, ⌘ j)J@D(1, ⌘ j)! j

+

p+1X
i⇤1

g(⇠i , 1)J@D(⇠i , 1)!i +

p+1X
j⇤1

g(�1, ⌘ j)J@D(�1, ⌘ j)! j

CQ@D
⇥
g(x)

⇤
. (��.��)

Here we have introduced J@D , which is the determinant of the Jabobian
arising from the mapping of edges in the reference element to the edges of
D. As previously noted, the quadrature rules (��.��) and (��.��) provide
exact integration of integrands with polynomial degrees up to 2p � 1
[���]. Due to the transformation onto the curved elements, we cannot
obtain exact integration due to the non-polynomial nature of the Jacobian
determinants.

In what is to follow, we are especially concerned with the practical
differences of using the strong form over the weak form. It is therefore
useful to discuss the discretization of flux and source terms (��.��), (��.��)
in both fomulations in some detail. For the weak form, we write out the
flux term as

Fh ·rLi ⇤

(p+1)2X
j⇤1

⇣
fx(q̂ j)Lj@xLi + fy(q̂ j)Lj@yLi + fz(q̂ j)Lj@zLi

⌘
(��.��)

and for the strong form as

(r · Fh)Li ⇤

(p+1)2X
j⇤1

⇣
fx(q̂ j)(@xL j)Li + fy(q̂ j)(@yL j)Li + fz(q̂ j)(@zL j)Li

⌘
.

(��.��)
The difference between the two lies in the derivative acting on either the
test function or on the Lagrange function over which the sum is formed.
This will become important later, when we discuss how to achieve the
well-balanced property in both formulations.

The source term is discretized by first representing the bottom topography
in the finite element space

⌧h(x) ⇤
(p+1)2X

i⇤1
⌧(xi)Li(x) (��.��)

by interpolating the topography within each element D. Using this
piecewise polynomial approximation, we construct the numerical ap-
proximation of the source term as

S̃h ⇤

(p+1)2X
j⇤1

©≠
´
C(x j , u(x j))Lj � '(x j)Lj

(p+1)2X
k⇤1
⌧(xk)rLk(x j)

™Æ
¨
. (��.��)

In this formulation, we have omitted the Lagrange multiplier as we can
enforce it directly by projecting the change in velocity onto the sphere

�� The discontinuous Galerkin method ���

(a) Icosahedron with inscribed
quadrilaterals.

(b) Resulting mesh on the sphere with
high-order nodes.

Figure ��.�: Generation of icosahedral
meshes on the sphere. The top figure de-
pict the initial icosahedron, where each of
the faces is broken up to generate quadri-
lateral elements. The mesh on the bottom
shows the final mesh including the LGL
nodes on each element.

[��].

��.� A few words on meshes and adaptivity

So far, we have conveniently ignored how meshes are generated in two
dimensions and in particular on the sphere. A popular choice on the
sphere are cubed sphere meshes, which can be generated by creating a
mesh on the sides of the unit cube and then projecting it onto the sphere
[���]. Related approaches use icosahedra to generate triangle meshes
and hexahedral meshes [���, ���]. In this work we use an icosahedron to
generate the mesh. As all its sides are equilateral triangles, we can generate
“nice” quadrilateral elements by subdividing them at the barycenter [��].
The elements are then projected onto the sphere and LGL nodes are
generated on each curved element. The procedure is illustrated in Figure
��.�. To refine the mesh, we can either subdivide triangular elements
further before quadrilaterals are formed or subdivide the quadrilateral
elements directly. This allows us to refine the mesh either globally or
locally. The latter is particularly useful as we can adjust the mesh to areas
of particular interest. We can do this either statically, refining regions of
interests from the start, or dynamically to better resolve features of the
solution such as shocks.

Locally refining the mesh through subdivisions has the drawback that it
generally results in non-conforming meshes. This means that the edges of
neighboring elements might not be aligned anymore. As a consequence,
hanging nodes, i.e. vertices of the elements located on the edge of another
element but not coinciding with any other vertex, are created. We simplify
our discussion by only considering balanced non-conforming meshes,
by which we mean that the difference in refinement is only one across an
interface. An example of such a mesh is given in Figure ��.�. This has
the consequence that a maximum of three elements can communicate at
each interface. Let us formalize this and explain how we can deal with
such interfaces at which three elements coincide.

Let M0 denote our initial, conforming, non-overlapping partition of⌦
into quadrilaterals. Subdividing each each element into four children
elements generates a series of conforming partitions M0 ,M1 ,M2 ,
For each of these grids, the superscript refers to the refinement level. We
arrange the elements into a quadtree forest F , such that each element
is connected to its parent from which it was created. At any time, the
active mesh M is represented as a subforest M ⇢ F , such that M is a
balanced, non-overlapping partition of⌦. The mesh hierarchy and the
active subforest corresponding to the mesh in Figure ��.� are shown in
Figure ��.�.

To express the interaction of three elements over one edge, we need a way
of handling the numerical flux and the associated surface integrals over
these edges. The principal challenge here is that the high order nodes do
not align on these edges. To resolve this, an intermediate solution with
matching high order points is computed, which allows the calculation of
the numerical flux. We adopt the methods employed in [���, ���], which
are also otherwise known as mortar element methods [���].

�� The discontinuous Galerkin method ���

�

�
�� ��

�� ��

� �

� �

�� ��

Figure ��.�: Schematic of a mesh contain-
ing various refinement levels. The grid is
balanced in the sense that the difference in
refinement levels of any two neighboring
cells is at most one.

� �

� �

�� �� �� ��

� �

�

� � �� ��

M0:

M1:

M2:

Figure ��.�: Illustration of the mesh hier-
archy corresponding to Figure ��.�. Ele-
ments in blue represent elements that are
currently active in the mesh.

Let D0 2M0 and D1 ,D2 2M1 be elements interfacing at the common
edge E0

⇤ E1 [E2, where E1
⇤ @D1 \ @D0 and E2

⇤ @D2 \ @D0 are the
edges of the children elements. The situation is illustrated in Figure ��.�.
For this edge, we have to specify the computation of the three fluxes

F
⇤,0
h (q0

h , q
1
h � q

2
h), F

⇤,1
h (q1

h , q
0
h), F

⇤,2
h (q2

h , q
0
h).

The superscripts for the fluxes indicate the edge and the corresponding
high order nodes on which the numerical flux is represented (See Figure
��.�). Then, we begin by evaluating the fluxes on the high order points of
the children elements

F
⇤,1
h (q1

h , q
0
h) ⇤ F

⇤
h(q1

h , P
1
0 q

0
h), (��.��)

F
⇤,2
h (q2

h , q
0
h) ⇤ F

⇤
h(q2

h , P
2
0 q

0
h), (��.��)

where we have introduced the “scatter” projection operators P1
0 , P

2
0 ,

which project the polynomial on E0 onto the nodal bases on E1 and
E2, respectively. Because the polynomial bases are of the same degree,
these projection operators do not change the polynomial itself. We write
out the projection operators to indicate the change of basis. This makes
the computation of the numerical flux (��.��) unambiguous, as both
polynomials in the argument are defined on the same set of nodes.

Similarly, we define the “gather” projection operators P0
1 , P

0
2 , which

project polynomials defined on the nodes of the children edges E1 and
E2 onto the nodes of the parent edge E0. Using these projections, we
define the numerical flux on the parent node as

F
⇤,0
h (q0

h , q
1
h � q

2
h) ⇤

1
2

⇣
P0

1 F
⇤
h(P1

0 q
0
h , q

1
h) + P0

2 F
⇤
h(P2

0 q
0
h , q

2
h)

⌘
. (��.��)

As mentioned before, the flux is first evaluated on the nodes of the children
elements before it is projected back onto the parent edge. Consequently,
it is a piecewise polynomial with 2(p + 1) degrees of freedom. The L2

D0

P1
0

P0
1

P2
0

P0
2

D1

D2

F⇤,1
h

F⇤,2
h

Figure ��.�: Treatment of the hanging
node in a non-conforming discretization.
The solution on the edge of the parent
element D0 is projected onto the edges of
the children elements for the computation
of the numerical fluxes. This solution is
then projected back to the parent edge.

�� The discontinuous Galerkin method ���

projection onto the polynomial basis of the parent edge can be broken
into two individual L2 projections P0

1 , P
0
2 from the children elements.

As a result, there is some loss of information as the flux is projected
onto a basis of dimension p + 1. In the context of the mortar element
method, this approach of performing the flux computation on the edge
with the higher approximation order is known as the maximum rule [���].
For more information on adaptive mesh refinement in the context of
discontinuous Galerkin methods, we refer the reader to [���, ���, ���].

��.� Time integration

By putting everything together and by replacing the integrals with the
quadrature rules (��.��) and (��.��), we obtain the semi-discrete scheme
in the form of a nonlinear system of ordinary differential equations

@t q̂h(t) ⇤ Rh(q̂h(t)), (��.��)

for the vector of unknowns

q̂h ⇤

266666666666664

q̂
1
1
...

q̂
1
(p+1)2

q̂
2
1
...

q̂
K
(p+1)2

377777777777775

(��.��)

and the right-hand side Rh(q̂h(t)) defined by the volume integrals of
flux and source terms, as well as surface integrals of flux terms. We have
therefore a problem of the form

d
dt

y ⇤ f (t , y), (��.��)

where y(t) is a vector-valued function in time, with the derivative
prescribed by f (t , y). This problem is typically solved numerically by
a multi-stage, multi-step linear method [���]. A popular class among
them are the explicit Runge-Kutta methods. These methods update the
solution y

n at time tn to the solution y
n+1 at time tn+1

⇤ tn
+ �t, by

taking the weighted average

y
n+1

⇤ y
n
+ �t

sX
i⇤1

bi ki , (��.��)

where ki denote the evaluation of f at different stages, given by

k1 ⇤ f (tn , yn), (��.��a)
k2 ⇤ f (tn

+ c2�t , yn
+ �t(a21k1)), (��.��b)

... (��.��c)
ks ⇤ f (tn

+ cs�t , yn
+ �t(as1k1 + as2k2 + · · · + as ,s�1k

s�1)). (��.��d)

�� The discontinuous Galerkin method ���

Table ��.�: Butcher Tableaus for a general,
explicit Runge-Kutta scheme.

0
c2 a21
...

...
. . .

cs as1 as ,s�1
b1 . . . bs

�3 �2 �1 0 1

�2

0

2

Re(�t�)

Im
(�

t�
)

Figure ��.�: Linear stability regions of
the explicit Euler method in blue and
SSPRK(�,�) method in red.

The coefficients that characterize the Runge-Kutta schemes can therefore
be summarized into the so-called Butcher tableau ��.� [���].

Unsurprisingly, the coefficients bi must satisfy

sX
i⇤1

bi ⇤ 1,

for the scheme to be consistent. We are also interested in the scheme
converging quickly, such that the truncation error is of order O(�tr+1),
where r is called the order. We call the scheme an explicit s-stage, order-r
Runge-Kutta scheme. It is known that for explicit schemes, the order is a
lower bound for the number of stages. In other words s � r and s � r + 1
for r > 4 [���, p. ���].

Apart from high order convergence, we are also interested in the proper-
ties of the scheme when errors are introduced. This is generally referred
to as the stability of the scheme. The study of numerical schemes for
solving the ODE system (��.��) is a well-established field and their
stability properties are well-studied [���, ���]. To introduce the concept
of stability, we analyze the explicit Euler scheme, given by

y
n+1

⇤ y
n
+ f (tn , yn). (��.��)

By linearizing the ODE (��.��), we obtain the system

d
dt

y ⇤ Ay , (��.��)

where A is the Jacobian of f with respect to y. As we can transform
this equation using a similarity transform, we can also instead consider
the system in which A is replaced by its Jordan normal form. As this
effectively decouples eigenvectors, we can instead consider the stability
for the method applied to d

dt y ⇤ �y, where � is an eigenvalues of A. If
we perform n steps of the explicit Euler method, we obtain

yn ⇤ (1 + �t�)n y0. (��.��)

Simultaneously, we know that the exact solution is exp(n�t�)y0. Requir-
ing that the numerical approximation stays bounded for solutions which
are bounded, yields the linear stability condition

|1 + �t� | < 1 (��.��)

for eigenvalues � 0. In other words, these are the scaled eigenvalues
�t�, for which we can expect the numerical scheme give a bounded
result if the solution itself is bounded. These regions are also called the
regions of absolute stability. Figure ��.� depicts the stability region of the
explicit Euler method (��.��), which is simply the unit circle centered at
�1.

In the context of non-linear partial differential equations and their
semi-discrete forms, the linear stability conditions are often insufficient.
Especially for hyperbolic problems, where solutions may become dis-
continuous, we require methods which guarantees stability in some
non-oscillatory quantity of the solution, such as the maximum norm or
the total variation of the solution [���]. For this reason, a tremendous

�� The discontinuous Galerkin method ���

Table ��.�: Butcher Tableau for the
strong-stability preserving Runge-Kutta
�,� scheme.

0
1 1

1/2 1/4 1/4
1/6 1/6 2/3

amount of effort has been undertaken to develop spatial discretizations
of the flux function r · F(q), which guarantee these stability proper-
ties when coupled with the explicit Euler scheme (��.��). However, for
practical applications, we require higher order methods and the Runge-
Kutta methods (��.��) presented previously, do not retain these stability
properties in general.

This is where the development of strong stability preserving Runge-Kutta
(SSPRK) methods come in [���]. Given the semi-discrete form (��.��) of
our scheme, assume that there exists a maximum time step �tmax, such
that

ky + �t f (y)k kyk (��.��)

holds for all y, some norm k·k and if 0 �t �tmax. Loosely speaking,
we say that a scheme is strong stability preserving with coefficient c, if
the solutions satisfy

kyn+1k kyn k , (��.��)

whenever (��.��) holds and �t c�tmax [���]. In particular, we are
interested high-order time-discreitzation methods with this property.
Shu and Osher were the first to introduce such methods [���]. The core
idea of these methods is to search for high-order Runge-Kutta schemes
which can be written as a convex combination of Euler time steps [���,
���]. In latter chapters we will see that such methods benefit us in that
they help us guarantee other properties such as preserving positivity of
the waterheight.

For our purposes we use the popular three-step, third-order strong
stability preserving Runge-Kutta method (SSPRK(�,�)), as presented in
[���]. The coefficients which characterize the scheme are listed in Table
��.�. There are other methods, specifically adapted to discontinuous
Galerkin discretizations such as [���]. For our discussion however, it will
be sufficient to stick to the simple explicit Euler scheme, knowing full
well that any relevant time discretization is a convex combination of
Euler steps. As such, we consider the fully-discrete form

q̂h(t + �t) ⇤ q̂h(t) + �tRh(q̂h(t)). (��.��)

�: As the velocity'u ⇤ 0 disappears, pres-
sure gradients induced by the bottom to-
pography balance the gradients due to the
gravity potential. This condition is equiva-
lent to the condition of hydrostatic balance
[��].

Well-balanced schemes ��
��.� The well-balanced property ���
��.� Hydrostatic reconstruction . ���
��.� Well-balanced DG schemes ���
��.� Non-conforming meshes . . ���

In this chapter we are concerned with the physical consistency of our
models. A first step towards this goal is the development of well-balanced
schemes. In the context of modelling tsunamis or storm surges, one is
often confronted with situations in which the initial condition can be
regarded as a perturbation of a stationary solution of (�.�a). For water
waves and tsunamis, we can imagine throwing a stone into a lake which
is perfectly at rest. Mathematically, the lake at rest is characterized by
the solution

' ⇤ max
�
'0 � ⌧, 0

�
, (��.�a)

'u ⇤ 0. (��.�b)

We can easily verify that the lake at rest solution, which we denote by
q ⇤ [', 'u]|, satisfies

r · F(q) ⇤ S(x , q), (��.�)

both for the one-dimensional and the spherical shallow water equations.
� To have a physically consistent scheme, it is therefore important to
construct schemes that are able to numerically preserve this steady-state
[��, ��, ���]. Otherwise we can expect spurious waves to be generated,
which pollute the solution that we are interested in. We call schemes that
can preserve this steady-state numerically well-balanced.

��.� The well-balanced property

We formalize the notion of well-balanced schemes. For nodal schemes,
we can do this in the following way:

Definition ��.�.� Let qh ⇤ ['h , 'uh]| denote the numerical representation
of the lake at rest solution, such that

'h(xi) ⇤max
�
'0 � ⌧h(xi), 0

, (��.�)

'uh(xi) ⇤0, (��.�)

holds on all nodes xi in the computational domain. We call a scheme with
right-hand side Rh(qh) well-balanced, if it exactly preserves the lake at rest
solution, i.e.

Rh(qh) ⇤ 0. (��.�)

Exactness in this context refers to machine-precision, as an exact 0
can hardly be guaranteed with floating-point arithmetic. Therefore, we
require Rh(qh) to be of order O(✏'), where ✏ is the relative rounding
error of floating point arithmetic. To simplify our analysis, we assume
that floating point arithmetic is performed exactly. This does not hinder

�� Well-balanced schemes ���

the accuracy of our analysis as catastrophic cancellation would have to
take place to significantly disturb the well-balanced scheme.

Example ��.�.� (Finite volume scheme in one dimension) We return to
the simple finite volume scheme in one dimension and check whether
it is well-balanced. To represent the bottom topography in the finite
volume scheme, we represent it as a piecewise constant function:

⌧h(xk) ⇤ ⌧(xk) ⇤ ⌧̂k .

We can then approximate the gradient of the bottom topography @x⌧
using centered finite differences

(@x⌧)k
h ⇡
⌧̂k+1 � ⌧̂k�1

2|Dk |
,

which makes it piecewise constant as well. We borrow the notation from
the discontinuous Galerkin schemes and write the k-th component of
the right-hand side as

R
k
h ⇤ � 1

|Dk |

✓
1
2
(F(q̂k+1) � F(q̂k�1)) � ↵

2
(q̂k+1 � 2q̂

k
+ q̂

k�1)
◆

� ê2'̂
k(@x⌧)k

h .

For the scheme to be well-balanced it must satisfy R
k
h ⇤ 0, which yields

the discrete momentum balance

1
2|Dk |

✓
1
2
('̂k+1)2 � 1

2
('̂k�1)2

◆
⇤ �'̂k ⌧̂

k+1 � ⌧̂k�1

2|Dk |
(��.�)

if uh ⇤ 0 is assumed. The lake at rest solution is further characterized
by '+ ⌧ ⇤ '0 ⇤ const. By representing this discretely as '̂k

⇤ '0� ⌧̂k ,
we can see that the scheme is not well-balanced in general unless ⌧h is
constant everywhere (i.e. no source term).

��.� Hydrostatic reconstruction

The preceding example shows that it is not straight-forward to obtain
a well-balanced scheme. For finite volume schemes, we observe that
the main problem lies in the different approaches for discretizing fluxes
and source terms. This can be seen by considering the one-dimensional
hydrostatic balance

@x

✓
1
2
'2

◆
⇤ �'@x⌧ (��.�a)

() '@x(' + ⌧) ⇤ 0. (��.�b)

The discrete momentum balance (��.�) corresponds to the discretization
of (��.�a) using central finite differences. This confirms that the problems
stem from the difference in discretizations of the source and flux terms,
respectively.

A possible way of overcoming this is a technique called hydrostatic

�� Well-balanced schemes ���

reconstruction, introduced by Audusse et al. [��]. The core idea is to
reconstruct the water surface at the cell interface and compute the
numerical fluxes based on the difference in water surface height as
opposed to water column height. To understand this, let us imagine that
we are at the interface xk+1/2. We compute the maximum of the bottom
topographies

⌧̂k+1/2
⇤ max {⌧̂k+1 , ⌧̂k}, (��.�)

and construct the hydrostatic variables

q̂
k+1/2�

⇤

"
'̂k+1/2�

('̂u)k+1/2�

#
⇤

"
max {'̂k

+ ⌧̂k � ⌧̂k+1/2 , 0}
'̂k+1/2�ûk

#
(��.�)

and similarly,

q̂
k�1/2+

⇤

"
'̂k�1/2+

('̂u)k�1/2+

#
⇤

"
max {'̂k

+ ⌧̂k � ⌧̂k�1/2 , 0}
'̂k�1/2+ûk

#
(��.��)

where the “-” and “+” at the end of the superscript distinguish between
the left and right sides of the interface. In other words, the hydrostatic
variables reconstruct the water column height related to the closest point
in the bottom topography, while making sure that they do not become
negative. We then replace the numerical flux and source terms with the
hydrostatically corrected numerical fluxes

F
•
l (q̂k , q̂k+1

h) ⇤ F
⇤(q̂k+1/2� , q̂k+1/2+) + 1

2

⇣
('̂k)2 � ('̂k+1/2�)2

⌘
ê2 ,

(��.��a)

F
•
r (q̂k�1 , q̂k

h) ⇤ F
⇤(q̂k�1/2� , q̂k�1/2+) + 1

2

⇣
('̂k)2 � ('̂k�1/2+)2

⌘
ê2.

(��.��b)

Here, the source term has been distributed across the interfaces of the
cell. The hydrostatically corrected scheme is then characterized by the
right-hand side

R
k
h ⇤ � 1

|Dk |

⇣
F
•
l (q̂k , q̂k+1

h) � F
•
r (q̂k�1 , q̂k

h)
⌘
. (��.��)

By inserting in the lake at rest solution qh , we verify that the scheme is
well-balanced. In particular, the momentum balance yields

� 1
2|Dk |

1
2
('̂k+1/2+)2 � 1

2
('̂k�1/2�)2 (��.��)

� 1
2
('̂k+1/2�)2 + 1

2
('̂k�1/2+)2

!
⇤ 0, (��.��)

due to '̂k+1/2�
⇤ '̂k+1/2+ and '̂k�1/2�

⇤ '̂k�1/2+ for the lake at rest
solution. The core idea of the hydrostatic reconstruction is to perform an
upwind evaluation of the bottom topography (��.�), to reconstruct the
physically meaningful water column heights at the interface. While we
have shown that this scheme is well-balanced, we have not done any
convergence analysis to prove that it actually solves the shallow water
system (�.�a). We refer the reader to [��] for the convergence analysis

�� Well-balanced schemes ���

�: A problem similar to well-balancing in
shallow water equations appears in aeroa-
coustics, where not conserving the metric
identities discretely results in spurious
waves on the order of magnitude of the
solution [���].

and further details on the hydrostatic reconstruction.

��.� Well-balanced discontinuous Galerkin
schemes

The core observation for finite volume schemes is that the discretization of
the discontinuous bottom topography and resulting source terms requires
extra care to guarantee well-balancedness. For the discontinuous Galerkin
scheme, we do not consider discontinuities of the bottom topography
to be an issue, as we can apply hydrostatic reconstruction. For the
moment, we therefore assume that the bottom topography is discretized
in a continuous fashion. We consider the weak form. By replacing the
integrals with the quadrature rules, the right-hand side for the weak
form becomes

R(qh) ⇤
π

D
Fh · rLi � Sh Li dx +

π
@D

n̂ · F
⇤
h dx

⇡QD [Fh · rLi � ShLi] +Q@D
⇥
n̂ · F

⇤
h Li

⇤
C Rh(qh). (��.��)

By inserting the numerical representation of the steady-state solution qh ,
we find that the formulation will not be well-balanced in general. Unless
both integrands evaluate to 0 exactly, we need to perform integration
by parts in order to use the balanced property (��.�) of qh . This relies
on exact numerical integration, which is a property that the curvilinear
discretization does not possess. The strong form

R(qh) ⇤
π

D
(r · Fh � Sh) Li dx �

π
@D

n̂ · �Fh � F
⇤
h
�

Li dx

⇡QD [(r · Fh � Sh)Li] �Q@D
⇥
n̂ · �Fh � F

⇤
h
�

Li
⇤
C Rh(qh)

(��.��)

on the other hand, is obtained through integration by parts. Inserting in
the lake at rest solution yields the well-balanced property (��.�) without
relying on exact quadrature. The property that divergence-free fields
remain constant in the strong form is related to the discrete version of
the metric identities. These are a necessary condition for conserving the
divergence-free property of a vector field when it is formulated on a
curved grid. Under a change of basis, it is always the case, however,
discrete representations do not necessarily conserve this property. It
can be shown it is automatically satisfied by the strong form of the
discontinuous Galerkin method [���]. �

Proposition ��.�.� Let qh satisfy the discrete, nodal balance condition
r · Fh(qh) � Sh(qh) ⇤ 0. Moreover, let the numerical flux be consistent for
this solution, such that F

⇤
h(q�h , q+

h) ⇤ Fh(qh). Then, the strong form of the
discontinuous Galerkin scheme Rh(qh) is well-balanced, regardless of the
exactness of the quadrature rule.

Proof. Inserting qh yields Rh(qh) ⇤ QD [0] �Q@D [0] ⇤ 0.

The advantages of the strong form lie in the conditions for Proposition
��.�.�. In other words, to obtain a well-balanced scheme, it is sufficient to

�� Well-balanced schemes ���

�: Dry nodes refer to nodes where the
waterheight ' is below a certain thresh-
old '0. We formalize this in Chapter ��,
which is concerned with the treatment of
such situations. Figure ��.� illustrates that
the numerical approximation of the water
surface cannot remain constant in the pres-
ence of dry areas unless negative values
are permitted.

guarantee r · Fh(qh) ⇤ Sh(qh) and Fh(qh) ⇤ F
⇤
h(q�h , q+

h) individually. As
such, we do not need to pay attention to the volume discretization when
we construct a discretization of the surface integrals. This property is
particularly useful in the construction of a well-balanced wetting/drying
method and non-conforming flux-discretizations, as we will see later
on.

Proposition ��.�.� Let M be a conforming mesh of⌦ and let the approxi-
mation of the bathymetry ⌧h 2 Vh(⌦,M) be continuous on ⌦. Moreover
let '0 > ⌧h , i.e. there are no dry areas in⌦. The strong form of the scheme,
as presented in Section ��.� is well-balanced under these assumptions.

Proof. We start by showing F
⇤
h(q�h , q+

h) ⇤ Fh(qh). We have uh ⇤ 0 and
'h ⇤ '0 � ⌧h , which is continuous due to the continuous bathymetry ⌧h .
This implies

F
⇤
h(q�h , q+

h) ⇤ F
⇤
h(qh , qh) ⇤ Fh(qh)

due to the consistency of the Lax-Friedrichs flux.

In addition, we have to establish r · Fh(qh) ⇤ Sh(qh). We can ignore
the Lagrange multiplier as it only projects the change in velocity to the
surface of the sphere. Inserting uh ⇤ 0 then reduces the equations to

'hr'h ⇤ �'hr⌧h ,

which is trivially satisfied by qh .

��.� Well-balanced non-conforming meshes

We have shown that the strong form of the discontinuous Galerkin
scheme has inherent advantages over the weak form. If integration is
exact however, this is irrelevant. Consequently, many well-balanced
discontinuous Galerkin schemes in the literature use the weak form
[���–���]. However, the advantages of the strong form go beyond this
as we will see in the following chapters. One particlar advantage lies
in the fact that surface and volume integrals do not have to balance
eachother. Exactly this makes handling non-conforming meshes simpler
and we only require a few changes to the method presented in Section
��.�. In particular, the introduction of non-conforming edges leaves
volume terms unchanged and therefore, we only have to ensure that
Fh(qh) ⇤ F

⇤
h(q�h , q+

h).
Let us recall the flux computation across non-conforming edges as
illustrated in Figure ��.�. The computation involves projections onto
the children elements, and back onto the parent edge, as well as the
evaluation of the flux itself. The projection of the polynomial on the
parent edge E0 to the edges of the children elements E1 and E2 is exact
as we are projecting from one polynomial basis of p-th order to another.
Unless there are dry areas, this preserves the lake at rest condition
'h + ⌧h ⇤ '0. Once dry nodes are introduced, we cannot guarantee that
the water surface 'h + ⌧h remains constant as we cannot allow negative
nodal values. � This implies that the nodal lake at rest property (��.�) is
not sustained by the projected solutions P1

0 q
0
h and P2

0 q
0
h . This is due to

the non-constant water surface and the choice of new nodes to represent

�� Well-balanced schemes ���

'h and ⌧h . To circumvent this issue, we choose to reconstruct the water
surface using

�h(xi) ⇤
(
'h(xi) + ⌧h(xi) 'h(xi) > 'tol

'0 otherwise,
(��.��)

where 'tol is a minimum water height, below which the solution is
considered dry. The projection is then performed on the reconstructed
variable �h :

P1,⇤
0 '

0
h(x1

i) B max
�

P1
0�

0
h(x1

i) � P1
0⌧

0
h(x1

i), 0

, (��.��)

P1,⇤
0 ('u)0h(x1

i) B P1
0 ('u)0h(x1

i). (��.��)

This ensures that the projection carries over the nodal lake at rest property
to the children nodes x

1
i .

Next, we need to ensure that the analytical and numerical fluxes evaluate
to the same value on the children nodes. The challenge here is that the
bathymetry generally is discontinuous due to the non-conforming mesh.
This implies that the lake at rest solution qh itself is also discontinuous
due to 'h ⇤ '0 � ⌧h . Because the numerical flux is single-valued it
cannot match the analytic fluxes on both sides simultaneously. We have
encountered this situation previously in the construction of well-balanced
finite volumes schemes. Again, we use the hydrostatic reconstruction as
introduced in [��]. This technique has been applied by [���] to form well-
balanced discontinuous Galerkin schemes with discontinuous bottom
topographies [���, ���]. We form the hydrostatic reconstruction of q

±
h at

the cell interfaces:

q
•,±
h ⇤

'•,±

h
('u)•,±h

�
⇤

max

�
'±

h + ⌧±h � ⌧•h , 0

'•,±
h u

±
h

�
, (��.��)

where ⌧•h is the reconstructed cell interface height

⌧•h ⇤ max
�
⌧�h , ⌧

+

h

. (��.��)

We replace the numerical flux (��.��) with the hydrostatically recon-
structed flux

F
•
h
�
q
�
h , q

+

h
�
B F

⇤
h

⇣
q
•,�
h , q

•,+
h

⌘
+

1
2

⇣
('�)2 � ('•,�)2

⌘ 26666664

0
êx
êy
êz

37777775
, (��.��)

with source term contributions in the components related to the mo-
mentum balance. This flux is not single-valued, as is necessary for it to
be well-balanced. If we insert the lake at rest solution, we recover the
analytical fluxes F(q±) on both sides of the interface.

The last projection step in (��.��) also requires special treatment, as it
is inexact. Again, we make use of the strong form and evaluate the
difference between numerical and exact fluxes directly on the children
nodes. As such, we perform gather projections on the difference of the

�� Well-balanced schemes ���

numerical and analytical fluxes:

1
2

P0
1

⇣
F
•
h

⇣
P1

0 q
0
h , q

1
h

⌘
� Fh

⇣
P1

0 q
0
h

⌘ ⌘
+

1
2

P0
2

⇣
F
•
h

⇣
P2

0 q
0
h , q

2
h

⌘
� Fh

⇣
P2

0 q
0
h

⌘ ⌘
.

(��.��)
For the lake at rest solution, this difference becomes 0 and as such, the
projected flux is also 0, regardless of the accuracy of the projection.

Proposition ��.�.� Let M be a balanced, non-conforming mesh in ⌦ and
let 'h be a lake at rest solution in the sense of (��.�). Then the modifications
(��.��)-(��.��) yield a well-balanced evaluation of flux terms at the non-
conforming interfaces.

Proof. Because the non-conformity of the discretization does not affect the
evaluation of the volume terms, we only have to prove the well-balanced
property of the fluxes.

We have already established that the lake at rest property carries over
to the nodes of the children elements, when the first projection step is
applied on the reconstructed water surface height. As such, the evaluation
of F

•
h
�
q
�
h , q

+

h
�

gives the same result as Fh
�
q
�
h
�
. Hydrostatic reconstruction

gives us '•,�
h ⇤ '•,+

h due to '±
h + ⌧±h ⇤ '0. Consequently, evaluation of

(��.��) yields

F
•
h
�
q
�
h , q

+

h
�
⇤ F

⇤
h

⇣
q
•,�
h , q

•,�
h

⌘
+

1
2

⇣
('+)2 � ('•,+)2

⌘ 26666664

0
êx
êy
êz

37777775
⇤ Fh

�
q
�
h
�
,

where we have utilized the identity of the flux (�.��). For the final
step we perform the gather projection steps on the flux differences
F
•
h
�
q
�
h , q

+

h
� � Fh

�
q
�
h
�

which are 0, as just demonstrated.

We remark that adaptive mesh refinement requires refinement and
coarsening operations, which compute the representation of the solution
on the updated mesh. For the method to be well-balanced, we require
these operations to conserve the lake at rest property of qh as well.
As these are usually projection operators, we can adapt the methods
presented here. This implies that projections are only applied to the
reconstructed water surface variable �h before converting it back.

Wet/dry transitions ��
��.� A survey of existing methods���
��.� Maintaining positivity ���
��.� Flux discretization ���
��.� A few notes on stability . . . ���

Numerical models for tsunami simulations, storm surge prediction
and inundation modelling all require some way of handling wet-dry
transitions. Loosely speaking, this refers to areas of the physical domain
in which the water column height ' goes from 0 to ' > 0 or vice-
versa. While this is intuitive to imagine, it poses significant challenges
to numerical schemes. Mathematically speaking, we should consider a
time-dependant domain ⌦(t), which encompasses all the areas which
have a non-zero water column height. Doing this numerically would
require constant remeshing, robust handling of topological changes of
⌦(t), as well as the construction of rules and algorithms for evolving the
boundaries of⌦(t). Consequently, most practical models choose to avoid
this by formulating heuristics for dealing with the wet-dry interface.
These result in a number of problems:

Negative waterheights Once the water column heights become nega-
tive, the character of the shallow water equations changes dramati-
cally. The wavespeeds become complex, which is an indication for
the system becoming ill-posed. We can therefore expect unphysical
results and the scheme to become unstable if negative values are
introduced.

Dealing with small ' To evaluate the flux, we need to compute ('u)2/',
which can lead to loss of accuracy if ' is close to 0.

Partly dry cells In the context of finite volume methods, wetting/drying
simply means that there will be some cells which can be considered
“dead”. With discontinuous Galerkin methods, this is not the case
anymore and we need a robust way of handling these elements.

Well-balanced property When dealing with these issues, we have to
preserve the lake-at rest solution.

Stability Finally, the methods should result in a stable scheme, which
does not amplify errors indefinitely.

��.� A survey of existing methods

We give a short survey of existing methods for dealing with these chal-
lenges. Bokhove uses the straight-forward approach of adapting the mesh
to the moving shorelines [���]. The advantage of this method is physical
accuracy as the shallow water equations are only solved where it is ap-
propriate. As previously noted, the drawback is that constant remeshing
is required and while this is straight-forward for one-dimensional prob-
lems as presented, it is considerably more difficult in two dimensions.
A large portion of algorithms proposed in the literature therefore treat
the shoreline as an immersed boundary within the elements. Various
methods exist to ensure positivity of the approximate solution [���, ���,
���]. For discontinuous Galerkin methods Xing et al. propose a method
for maintaining the positivity of cell-averages by using a restriction on
the timesteps [���]. Positivity on the nodes is then ensured by using

�� Wet/dry transitions ���

a positivity-preserving limiter, which rescales the polynomial around
the positive average. However these methods [���, ���] are not uncon-
ditionally well-balanced as partly dry cells are neglected. The problem
with these cells is that they introduce artificial gradients and generate
unphysical waves at the wet-dry interface. This effect has also been
observed by others, and is sometimes referred to as numerical storms
[���]. To overcome this Kesserwani et al. propose a reconstruction of
nodal values such that the pressure gradients vanish for the lake at rest
solution [���]. The authors present this method for a piecewise linear
method in one dimension and it is unclear how this approach performs
for higher-order methods. Other approaches cancel gravity in these cells
to eliminate the problem of artificial pressure gradients [���, ���]. This in
turn requires the introduction of dual-valued fluxes to make the scheme
well-balanced. While these methods make the schemes well-balanced,
they are not consistent with the physical model and appear to be re-
stricted to piecewise linear polynomials. Other approaches use artificial
porosity and introduce a fraction indicator to represent how much of the
cell is wet and how much is dry [���, ���]. This allows for implicit time
integration with large timesteps but introduces other problems such as
higher wave speeds in the wet-dry region and a modified shallow water
model. Finally, there is the issue of stability at the wet-dry interface.
Most of the aforementioned algorithms reduce the order of the solution
to linear polynomials and apply a slope limiter to prevent unphysical
discharges [���, ���]. Meister and Ortleb use an implicit scheme with a
modal filter and a shock indicator to stabilize the scheme in the nearly
dry regions [���].

The method that we propose uses the approach presented in [���] to
maintain positivity and combines this with a modified discretization for
partly dry cells [�]. The advantage is that it does not modify the physics
and it is valid for any polynomial degree.

��.� Maintaining positivity

Before we continue, we require a distinction between wet and dry areas.
We call a node xi dry, if the water height 'h(xi) is smaller than a certain
tolerance 'tol. If the opposite is true we call it a wet node. In the context
of discontinuous Galerkin methods, three situations can occur. If an
element D contains only dry nodes, we call it a dry element. If it contains
only wet nodes we call it a wet element. In the case that the element
contains both wet and dry nodes, we call the element semi-dry or partly
dry. As previously noted, these elements require special attention.

We adopt the approach presented in [���] for maining the positivity
of the solution. This method uses timestep retrictions, which is a well-
established approach in the context of finite volume schemes to guaran-
tees positivity of the cell average 'avg

h . In the following, we adapt it to
the spherical shallow-water equations.

Proposition ��.�.� Let qh(x , tn) denote the numerical solution at time tn
with positive water height on all nodes xi . Assuming exact integration of the

�� Wet/dry transitions ���

integrals in (��.��), the cell-averaged water column height

'avg
h ⇤

π
D
'h(x)dx (��.�)

remains positive after one Euler timestep (��.��), provided the timestep meets
the CFL-like requirement

J@D
JD
↵�t !1

2
(��.�)

everywhere.

Proof. Under the assumption of exact numerical integration, we recover
the evolution of cell averages by inserting Li ⇤ 1 and the Euler timestep
discretization in (��.��):
π

D
qh(x , tn+1)dx ⇤

π
D

qh(x , tn)dx + �t
✓π

D
Sh dx �

π
@D

n̂ · F
⇤
h dx

◆
.

As we assume exact numerical integration, the strong form and the
weak form are equivalent. We choose the weak form, which reduces
the evolution of cell-averages to the boundary of the domain D. We
introduce F

⇤
' , which denotes the component of the numerical flux acting

on the water height. Then, by replacing the integrals with the quadrature
rules, we obtain

QD['h(x , tn+1)] ⇤ QD
⇥
'h(x , tn+1)

⇤
� �t Q@D

h
n̂ · F

⇤
'

�
q
�
h (x , tn), q+

h (x , tn)
� i

for the cell-averaged water height. By splitting the quadrature into sums
over the edges and the sum over the interior points, we have

QD['h(x , tn+1)]

⇤

pX
i , j⇤2
'h(⇠i , ⌘ j , tn)JD(⇠i , ⌘ j)!i! j

+

p+1X
i⇤1
'h(⇠i ,�1, tn)JD(⇠i ,�1)�i!i!1

� �t n̂ · F
⇤
'

�
q
�
h (⇠i ,�1, tn), q+

h (⇠i ,�1, tn)
�

J@D(⇠i ,�1)!i

+

p+1X
i⇤1
'h(⇠i , 1, tn)JD(⇠i , 1)�i!i!h

� �t n̂ · F
⇤
'

�
q
�
h (⇠i , 1, tn), q+

h (⇠i , 1, tn)
�

J@D(⇠i , 1)!i

+

p+1X
j⇤1
'h(�1, ⌘ j , tn)JD(�1, ⌘ j)�j!1! j

� �t n̂ · F
⇤
'

⇣
q
�
h (�1, ⌘ j , tn), q+

h (�1, ⌘ j , tn)
⌘

J@D(�1, ⌘ j)! j

+

p+1X
j⇤1
'h(1, ⌘ j , tn)JD(1, ⌘ j)�j!h! j

� �t n̂ · F
⇤
'

⇣
q
�
h (1, ⌘ j , tn), q+

h (1, ⌘ j , tn)
⌘

J@D(1, ⌘ j)! j

�� Wet/dry transitions ���

where

�i ⇤

(
1
2 if i ⇤ 1 or i ⇤ p + 1,
1 otherwise.

As we assume the solution at tn to have a positive water height every-
where, the first term remains positive. Thus, it is sufficient to show that
the four boundary sums stay positive. By inserting the Lax-Friedrichs
flux (��.��), we rewrite the boundary terms as

'�h

JD�!1 �

1
2
�t J@D

�
n̂ · u

�
h + ↵

� �
+ '+

h�t J@D

↵
2
� 1

2
n̂ · u

+

h

�
,

where we have dropped the indices for simplicity. Due to the definition
of ↵ (��.��), we have |n̂ ·u±

h | < ↵. It follows that the second term is always
positive and that the first term is positive under the condition

JD�!1 � J@D↵�t ,

which is the sufficient condition to guarantee positive averages 'avg
h .

Even though we have assumed exact numerical integration, this condition
is sufficient to ensure positivity of cell averages in practice. Apart from
their impacts on well-balancedness, the difference between the weak
and strong form are negligible and this condition gives us an idea of
how big the timesteps can be while maintaining positive cell-averages.
Positive cell averages are also retained with higher-order time integration
methods if we utilize convex combinations of Euler timesteps. This is
one of the principle motivators behind Strong stability preserving Runge-
Kutta methods as presented in Section ��.�. Using these time integrators
will therefore preserve the positivity of the cell-averaged water heights
[���, ���].

In the context of a discontinuous Galerkin discretization, we need to
ensure that each nodal value remains positive in addition to the cell
average. To achieve this, a limiter is applied in a post-processing step,
which rescales the solution around the positive cell-averages [���].

As we have established the positivity of the cell-averages, we correct the
nodal values using the positivity limiter presented in [���]. After each
timestep, we rescale the solution in each cell according to

'⇤h ⇤ ✓
⇣
'h � '

avg
h

⌘
+ 'avg

h , (��.�a)

u
⇤
h ⇤ ✓

⇣
uh � u

avg
h

⌘
+ u

avg
h , (��.�b)

where

✓ ⇤min

(
1,

'avg
h

'avg
h � 'min

h

)
, (��.�)

'min
h ⇤min

xi2D

�
'h(xi)

. (��.�)

The cell-averages 'avg
h and u

avg
h can be computed using (��.��). We

observe that the positivity limiter (��.�a) rescales the solution around
the average water height. Finally, as we consider any node with water
height below the threshold 'tol as a dry node, we need to make sure that

�� Wet/dry transitions ���

the velocity remains 0 at these nodes. For this reason, we set 'u ⇤ 0 at
all nodes with water heights ' 'tol. This process conserves mass, but
it does not conserve momentum. However it is necessary to maintain
stability and the physical plausibility of the solution.

��.� Well-balanced wet-dry transitions

Although the combination of timestep restriction and positivity limiter
can handle dry areas, the outcome is not well-balanced. To illustrate
this, let us analyze the situation in one dimension. Figure ��.� depicts the
lake at rest solution and its numerical approximation. As we can see, we
cannot accurately represent 'h + ⌧h ⇤ const. numerically in partly dry
cells, due to the requirement of positive water heights. Consequently,
the numerical representation of the lake at rest solution (��.�) has a non-
zero slope. We can expect this to introduce artificial pressure gradients
'hr

�
'h + ⌧h

�
, in which the solution in the dry areas induces a non-zero

gradient in the wet domain. Clearly, this interaction is not physically
accurate as there should be no interaction between these two domains.
As a consequence, spurious waves are created at the shores and pollute
the domain of interest.

We propose a simple, yet effective approach to mitigate this problem.
To do so, we switch to a local evaluation of the gradient using finite
differences. This allows us to ignore the irrelevant dry areas and eliminate
their influence on the solution. We introduce the finite difference operator

D⇠ f (⇠i) ⇤

8>>>>>><
>>>>>>:

f (⇠i+1)� f (⇠i�1)
⇠i+1�⇠i�1

⇠i+1 , ⇠i , ⇠i�1 are wet nodes
f (⇠i+1)� f (⇠i)
⇠i+1�⇠i

⇠i+1 , ⇠i are wet, ⇠i�1 is dry or i � 1 < 1
f (⇠i)� f (⇠i�1)
⇠i�⇠i�1

⇠i , ⇠i�1 are wet, ⇠i+1 is dry or i + 1 > p + 1
0 otherwise,

(��.�)
which takes the information on neighboring nodes into account only if
they are wet. This finite difference operator (��.�) can be understood as
a way of implicitly imposing boundary conditions within the semi-dry
element. It is consistent with the physical situation as we do not have
any information on what the water surface ' + ⌧ should be in the dry
regions to recover the correct gradients in the wet part. We discard this

⌦c ⌦

' + ⌧

⌧

(a) Exact solution

Dk

'h + ⌧h

⌧h

(b) Numerical situation

Figure ��.�: Comparison of the exact and
numerical representations of the lake at
rest solutions. The polynomial approxima-
tion cannot have a vanishing slope unless
unphysical, negative water heights are al-
lowed.

�� Wet/dry transitions ���

information by using the local finite difference discretization to compute
the gradient of the water surface.

We can translate the finite difference operators to the physical domain as
we would do for regular differentiation operators:

Dx ⇤ @x⇠D⇠ + @x⌘D⌘ . (��.�)

We define Dy and Dz in a similar fashion. Using these operators we
construct the gradient-like operator

rh ⇤

266664
Dx
Dy
Dz

377775
, (��.�)

which replaces the conventional gradient operator for the computation
of 'hrh

�
'h + ⌧h

�
. We we can now show the well-balancedness of our

modified discretization:

Proposition ��.�.� Let qh again be the numerical lake at rest solution (��.�)
including dry domains. Then, let Rh(qh), denote the right-hand side (��.��),
where we have replacedr �

'h + ⌧h
�

withrh
�
'h + ⌧h

�
. The modified scheme

is well-balanced for qh , i.e. Rh(qh) ⇤ 0.

Proof. Following the proof of Proposition ��.�.�, it is sufficient to show
the final step

'hrh'h ⇤ �'hrh⌧h ,

for qh . Due to the linearity of rh , this is equivalent to 'hrh
�
'h + ⌧h

�
⇤ 0.

Inserting 'h yields

D⇠
⇣
max

n
'0 � ⌧h(x(⇠i , ⌘ j)), 0

o
+ ⌧h(x(⇠i , ⌘ j))

⌘

⇤ D⇠
⇣
'0 � ⌧h

⇣
x(⇠i , ⌘ j)

⌘
+ ⌧h

⇣
x(⇠i , ⌘ j)

⌘ ⌘
⇤ 0.

The first step is permissible as any water height ' 'tol will be ignored
byD⇠ anyway. The latter step holds as any finite difference of the constant
function '0 will yield 0. This is also true for D⌘, and consequently for
Dx , Dy and Dz . This means that

rh
�
'h + ⌧h

�
⇤ 0,

which concludes the proof.

To maintain high-order accuracy wherever possible, we switch to this
discretization only if an element contains dry areas. As such, the lower
accuracy introduced by this operator is restricted to the semi-dry cells, in
which one cannot expect high-order accuracy. Furthermore, the number
of such cells is expected to be small.

��.� A few notes on stability

Before we condlude, we discuss the effect of wetting/drying on the sta-
bility of the scheme. Numerical experiments show that the computation

�� Wet/dry transitions ���

of fluxes in the semi-dry cells can be unstable if performed in the wrong
manner. While it might seem attractive to construct the flux term @x'u2

exactly using the derivatives @x u and @x', this leads to an unstable
scheme. In general, the velocity u is not continuous at the wet-dry inter-
face. Consequently, the evaluation of @x u introduces Gibbs oscillations
which render the scheme unstable. For this reason, we evaluate the
derivatives of the flux variables @x'u2, @x'uv, . . . directly. This is not
exact as flux variables are first approximated by polynomials, however
it avoids the problem of Gibbs oscillations associated with u. This step
introduces an error, as we first approximate the flux using a polynomial
of order p before we evaluate its derivatives.

Finally, high-order discontinuous Galerkin schemes oftentimes require
some sort of artificial dissipation to stabilize the scheme in the presence
of strong gradients and shocks. In the context of the shallow water
equations, this happens in the vicinity of the wet-dry interface where the
water depth is low. The lower water height leads to lower wave speeds
and consequent build-up of water waves. To stabilize the scheme, we
apply a filter, which modifies the solution according to

q
F
h ⇤

pX
i , j⇤0
�i� j q̂i jPi(⇠)Pj(⌘), (��.�)

where Pi , Pj denote the basis functions of a modal basis in one dimension
and q̂i j denotes the respective coefficient of the solution in the modal
basis. We use Legendre polynomials and filter the solution using the filter
weights �i , which dampen high-order modes. This acts as additional,
artificial viscosity and has a stabilizing effect on the numerical scheme
[��]. We choose an exponential filter with weights

�i ⇤ exp
⇣
�a

�
i/p

� s
⌘

(��.��)

and set the filter parameters to a ⇤ 30 and s ⇤ 10. Finally, to ensure
that filtering does not impact the well-balanced property of the scheme,
we perform it on the reconstructed water surface (��.��). Moreover, we
restrict the use of the filter to semi-dry cells. This is done to maintain the
high-order accuracy of the method in wet areas, where we can expect the
solutions to be sufficiently smooth. The entire post-processing procedure
is described in Algorithm ��.�.

Compute the immediate solution qh(x , tn+1) at time tn+1.
Reconstruct water surface �h (��.��).
In partly dry elements apply the filter (��.�)
Apply the positivity-preserving limiter (��.�a)
Set u ⇤ 0 on all dry nodes.

Algorithm ��.�: Post-processing of partly
dry cells to ensure positivity and stability
of the scheme.

�: A suitable forcing term can be found by
inserting in the solution into the shallow
water equations.

Numerical Results ��
��.� Results in one dimension . . ���

Standing wave ���
Lake at rest ���
Dam break on a dry domain ���
Oscillating lake ���

��.� Results on the sphere ���
Lake at rest solution ���
Adaptive mesh refinement . ���
Tsunami simulations ���

��.� Dynamic source models . . . ���
Tohoku tsunami ���
Sumatra-Andaman tsunami ���

��.� Concluding remarks ���

In this chapter, we present results in one dimension, as well as in two
dimensions on the rotating sphere. To analyze these results, it is useful
to introduce some error norms. A classical one is the relative L2 error

EL2 ,⌦ ⇤
kqh � qkL2(⌦)
kqkL2(⌦)

, (��.�)

where⌦ could also be replaced by a subset of the domain. The solution
q denotes the exact solution approximated by the numerical solution qh .
As there is not always an analytical solution available, we introduce the
relative mass error

E',⌦ ⇤

Ø
⌦
'h dx �

Ø
⌦
' dxØ

⌦
' dx

(��.�)

and energy error

EE,⌦ ⇤

Ø
⌦

E(qh)dx �
Ø
⌦

E(q)dxØ
⌦

E(q)dx
(��.�)

where E(q) denotes the total energy

E(q) B 1
2g

⇣
'kuk2 + '2

+ '⌧
⌘
. (��.�)

For the conservation errors, we can replace the reference solution q with
the initial condition q0, as both mass and energy are conserved by the
shallow water equations.

��.� Results in one dimension

Standing wave

Before discussing some common test cases for the shallow water equa-
tions in one dimensions, we investigate the accuracy of the numerical
scheme that we have derived for partly dry cells. To do so, we enforce a
smooth solution ', 'u 2 C1 of the form

' ⇤ '0 + 'A cos!t sin x ,

'u ⇤ �'A
!

sin!t cos x ,

with '0 ⇤ 0.3, 'A ⇤ 0.1, ! ⇤ ⇡, ⇤ ⇡. The domain is set to
⌦ ⇤ [�0.5, 0.5] and exact Dirichlet boundary conditions are used. We
enforce the solution by choosing a suitable right-hand side which yields
this solution. � We compare the convergence behavior of the regular
flux discretization to the wetting/drying flux discretization (��.�). The

�� Numerical Results ���

100 101 102 103
10�8

10�5

10�2

�
-�

|⌦|/h

|E
L2 ,
⌦
|

100 101 102
10�13

10�7

10�1
�

-�
�

-�
�

-�
�

-�

|⌦|/h

|E
L2 ,
⌦
|

p ⇤ 1 p ⇤ 2 p ⇤ 3 p ⇤ 4

Figure ��.�: Convergence behavior for the
standing wave solution. We compare the
accuracy of the wetting/drying flux dis-
cretization on the left to the accuracy of
the regular discontinuous Galerkin dis-
cretization on the right.

�1 0 1

�0.2

0

0.2

0.4

x

h
+

b

t ⇤ 1.0

�1 0 1
�2

�1

0

1

2 ·10�3

x

hu

t ⇤ 1.0

Bathymetry Conventional method Proposed method

Figure ��.�: Lake at rest solution on a slop-
ing bed at t ⇤ 1. We compare the conven-
tional DG method to our well-balanced,
which takes wetting/drying into consid-
eration.

results are shown in Figure ��.�. Instead of using the wetting/drying
discretization only in partly dry cells, we use it on the entire domain
to generate the results on the left. The results on the right depict the
regular discretization as a baseline for comparison. We observe that
the unmodified discontinuous Galerkin scheme achieves high-order
accuracy as we would expect. In contrast, we recover only second order
accuracy with the wetting/drying discretization, even with higher-order
polynomial approximants. We note that the discretization of the flux
term remains unchanged if we choose the finite difference approximation
for a first order discontinuous Galerkin method on a fully wet cell. For
higher order approximations, we do not use the full gradient information
available to us and we only see an improvement in the constant but not
in the order of convergence. Thus, we can be confident that this change
of flux discretization will indeed properly converge to the exact solution,
provided it is sufficiently smooth. In practice, the transition from wet to
dry areas is continuous but not differentiable and we therefore cannot
expect more than first order accuracy using polynomial approximations.
For two-dimensional problems, this loss of accuracy is acceptable how-
ever, as we can expect the number of partly dry elements (located at the
shores) to scale as O(h�1) in contrast to the overall number of elements,
which scales as O(h�2).

Lake at rest on a sloping beach

Let us verify the well-balanced property for one-dimensional problems.
To do so, we will use the lake at rest solution on a linearly sloping bed
with b(x) ⇤ 0.5x, g ⇤ 9.81,⌦ ⇤ [�1.5, 1.5] and '0 ⇤ 0.1005g as depicted

�� Numerical Results ���

0 0.2 0.4 0.6 0.8 1

10�15

10�10

t

|E
'
,⌦
|

0 0.2 0.4 0.6 0.8 110�17

10�10

10�3

t

|E
E
,⌦
|

Conventional method Proposed method

Figure ��.�: Comparison of the conserva-
tion errors of the proposed method to a
conventional DG discretization. Mass con-
servation errors are shown on the left in
logarithmic scale. The error of our method
cannot be displayed as it is exactly 0. En-
ergy conservation errors are shown on the
right.

�: The well-balanced property implies ex-
act conservation of mass and energy in the
case of the associated stationary solution.

in Figure ��.�. We do not apply filtering and use the parameters p ⇤ 3,
K ⇤ 100, �t ⇤ 5 · 10�5, 'tol ⇤ 10�4. As boundary conditions we use the
exact solution on the opposing side of the interface.

Figure ��.� compares the numerical results obtained with our method
using finite difference approximations in the volume integral, to results
obtained with the conventional DG discretization using the polynomial
derivatives. The latter method corresponds to the positivity-preserving
discontinuous Galerkin discretization presented in [���]. In contrast to
[���], we ensure that the wet-dry interface does not coincide with the
cell interface. This is important as otherwise, we would only be testing
the well-balanced property for completely flooded cells, which is not
sufficient for practical applications. Even with the existence of such a
challenging semi-dry cell, we observe that our method preserves the
lake at rest solution well. This is in contrast to the conventional method,
where we observe artificial waves being created which propagate into
the domain and therefore pollute the solution with spurious waves.
These are especially noticeable in the discharge plot in Figure ��.�, which
shows non-zero discharges from the semi-dry cell to the left. As we have
discussed previously in Section ��.�, this is caused by artificial pressure
gradients. The magnitude of the waves that are created might seem
negligible. However, in our experience, this is not the case when we
move to two dimensional problems. It is therefore clear that the semi-dry
cells require a careful treatment to ensure the well-balanced property of
the scheme.

The wetting/drying discretization (��.�) performs well as seen in Figure
��.�. In particular, we do not observe any spurious changes in the water
surface. For the lake at rest solution, exact integrations implies both
conservation of mass and energy as well as the well-balanced property.
We can therevore use the mass and energy conservation errors to verify
the well-balanced property for our scheme as it is based on integrating
the lake at rest solution exactly. Figure ��.� displays the relative mass
and energy errors over time for both our scheme and a conventional DG
discretization. While the latter does not conserve either energy or mass,
we observe that our method does so to within machine precision. � In fact
the mass error is exactly 0. For the conventional method we observe that
the mass error is initially small while energy errors are accumulated right
away. This is caused by the artificial pressure gradients at the wet-dry
interface as discussed previously. Once these waves begin interacting
with the boundary at t ⇡ 0.8, the rate at which mass conservation is

�� Numerical Results ���

�2 �1 0 1 2
�

�.��

�.�

x

h
+

b
t ⇤ 0.0

�2 �1 0 1 2

�

�.��

�.��

�.��

x

hu

t ⇤ 0.0

�2 �1 0 1 2
�

�.��

�.�

x

h
+

b

t ⇤ 0.5

�2 �1 0 1 2

�

�.��

�.��

�.��

x

hu

t ⇤ 0.5

�2 �1 0 1 2
�

�.��

�.�

x

h
+

b

t ⇤ 1.0

�2 �1 0 1 2

�

�.��

�.��

�.��

x

hu

t ⇤ 1.0

Bathymetry Numerical solution Analytical solution

Figure ��.�: Dam break on a dry bed at
different times. Comparison of the numer-
ical solution with p ⇤ 4 and K ⇤ 100 to
the analytical solution.

violated begins to increase.

Dam break on a dry domain

We move on to some dynamical test cases. In the next test case we model
a dam break over a dry bed. Initially, we have a water reservoir of height
'l ⇤ 0.1g on the left half-plane and a dry domain on the right one. We
assume the dam break to be instantaneous and the bottom to be flat, i.e.
⌧ ⇤ 0. The analytical solution (and initial condition) of this problem is
given by

'(x , t) ⇤
8>>><
>>>:

'l x xA(t)
4
9
�p
'l �

x�x0
2t

� 2 xA(t) < x < xB(t)
0 x � xB(t)

and

u(x , t) ⇤
8>>><
>>>:

0 x xA(t)
2
3
�p
'l +

x�x0
t

�
xA(t) < x < xB(t)

0 x � xB(t)
,

�� Numerical Results ���

101 102 10310�9

10�5

10�1
�

-�

K ⇤ |⌦|/h

|E
L2 ,
⌦
|

101 102 10310�9

10�5

10�1

�
-�

�
-�

K ⇤ |⌦|/h

|E
L2 ,

[0
,1
]|

p ⇤ 1 p ⇤ 2 p ⇤ 3 p ⇤ 4

Figure ��.�: Convergence for the dam
break solution on a dry bed. The global
L2 error on ⌦ on the left is compared to
the local L2 error on the right, which is
computed in region [0, 1] on the right. The
solution is fully smooth in this region.

where xA(t) ⇤ x0 � tp'l and xB(t) ⇤ x0 + 2tp'l are the positions of the
kinks in the solution [���]. This problem corresponds to the Riemann
problem with a right state of ' ⇤ 0, 'u ⇤ 0. This test case is particularly
challenging due to the presence of the rarefaction wave at the wet-dry
interface [��]. Thus, the scheme has to accurately resolve the shock while
maintaining positivity, which can be expected to be challenging. Many
schemes fail at this test case due to stability issues at the wet-dry interface.
For this test case, we use both filtering and the positivity-preserving
limiter and set the dry tolerance to 'tol ⇤ 10�6.

Figure ��.� depicts the numerical solution in comparison to the analytical
solution. The former is computed using p ⇤ 4, K ⇤ 100, exact boundary
conditions and a timestep of�t ⇤ 5 ·10�5. We observe an excellent match
between the solutions, as well as an accurate prediction of the location of
the shore.

We investigate the accuracy of the method and consider the convergence
of the L2 error. The solution is initialized at t ⇤ 0.1 and filtering is only
used in the partly dry cells. This is done to eliminate the effect of filtering
as much as possible from the convergence results. Filtering is necessary
on the other hand to yield a stable scheme. The simulation is run until
t ⇤ 1 with�t ⇤ 5 ·10�5 for varying polynomial orders p and mesh widths
h. The wet-dry tolerance 'tol requires special attention, as it can severely
affect the accuracy if it is set too high or make the scheme unstable if it is
set too low. In our experience, a reciprocal linear relation 'tol ⇤ 10�4/p
yields satisfying results. This relation can be unnecessarily small as we
have observed much higher tolerances to be possible for small mesh
widths. Figure ��.� shows the results of the convergence analysis, We
compare the convergence of the relative L2 error on the entire domain
⌦ ⇤ [�2, 2] to the convergence of the error in the smooth subdomain
[0, 1].
This can be an interesting test as the latter is initially dry but fully wet
at t ⇤ 1. Moreover, the solution is a third order polynomial, which
means that we cannot expect more than third order accuracy. While
global convergence rates are limited due to the low regularity of the
solution, we can indeed observe up to third order convergence rates in
the wet areas where the solution is smooth. The convergence rates are not
optimal however, as cubic ansatz functions should theoretically achieve
machine precision accuracy in the smooth part if the scheme is exact. In
practice, this is not possible due to the presence of the wetting/drying
process and the errors associated with the flux discretization in the

�� Numerical Results ���

�1 0 1
0

0.1

0.2

x

h
+

b

t ⇤ 0.0

�1 0 1

-�.��

�

�.��

x

hu

t ⇤ 0.0

�1 0 1
0

0.1

0.2

x

h
+

b

t ⇤ 1.0

�1 0 1

-�.��

�

�.��

x

hu

t ⇤ 1.0

�1 0 1
0

0.1

0.2

x

h
+

b

t ⇤ 2.0

�1 0 1

-�.��

�

�.��

x

hu

t ⇤ 2.0

Bathymetry Numerical solution Exact solution

Figure ��.�: Oscillating lake in a parabolic
bed. Comparison of the exact solution to
the numerical solution computed with p ⇤

2 and K ⇤ 100.

volume terms (��.��). We can expect errors to propagate into the rest of
the solution, which causes the subobtimal convergence rates. The results
are nontheless encouraging and imply that we can expect higher order
accuracy in wet areas, even if low order errors propagate into these areas.
This is consistent with the behavior of DG methods in the presence of
shocks, where Gibbs oscillations can pollute other areas far way from
the shock [��]. We conclude that high-order accuracy can indeed be
achieved in fully wet areas of the domain even in the presence of wet-dry
transitions.

Oscillating lake

Our final, one-dimensional test case is the oscillating lake in a parabolic
channel

'(x , t) ⇤ max
n
'0 + 2'0↵ cos(!t)

⇣
x � ↵

2
cos(!t)

⌘
� '0x2 , 0

o
,

('u)(x , t) ⇤ �'(x , t)↵! sin(!t).

This is the analytical solution to the one-dimensional shallow water
equations in a parabolic bed given by ⌧(x) ⇤ '0x2, where ! ⇤

p
2'0

is the frequency of the oscillation [���]. We choose the parameters

�� Numerical Results ���

101 102 10310�6

10�3

100

�
-�

|⌦|/h

|E
L2 ,
⌦
|

101 102 10310�6

10�3

100

�
-�

|⌦|/h

|E
L2 ,

[�
0.

5,
0.

5]
|

p ⇤ 1 p ⇤ 2 p ⇤ 3 p ⇤ 4

Figure ��.�: Convergence for the oscillat-
ing lake in a parabolic channel. Global L2

errors on the left are compared to the local
error in a subdomain which remains wet
at all time, on the right.

'0 ⇤ 0.1005g, ↵ ⇤ 0.1 and set the domain to [�1.5, 1.5]. Boundary
conditions do not play a role, as the two shore points should never reach
the boundaries of the domain. For this example, filtering is performed
directly on the conserved variables qh as there is no meaningful water
surface to reconstruct. This is because this solution is far from the lake at
rest solution. Figure ��.� compares the numerical solution, obtained with
p ⇤ 2, K ⇤ 100, �t ⇤ 1 · 10�4 and 'tol ⇤ 10�4 to the analytical solution.
Although this is a challenging test case, due to the constant wetting
and drying, we observe that the scheme remains stable and properly
reconstructs the shores.

Figure ��.� depicts the results of the convergence analysis for the os-
cillating lake problem. We compare global errors to local errors for a
subdomain of the solution which remains wet at all times. To this end,
we evaluate the relative L2 error both on the entire domain, as well as
on the subdomain [�0.5, 0.5]. As in the dam break test, we observe that
the convergence of the L2 error on the entire domain is only slightly
higher than 1. Again, this is caused by spatial approximation errors at
the wet-dry interface dominating the global approximation error. We
have to accept this error as we cannot expect to do better than first order
accuracy at the shore. In the smooth part however, the solution lies in the
ansatz space Vh and high-order convergence is possible. The analytical
solution is a quadratic polynomial in space and we observe convergence
up to second order. This is similar to the behavior that we observed with
the dam break case, where we could not achieve errors in the order of
machine precision. Once again, we conclude that this is caused by errors
introduced by the wetting/drying process.

��.� Results on the sphere

We are finally ready to apply our methods to discretizations of the
spherical shallow water equations, formulated on the rotating sphere.
For all remaining simulations, we set physical constants to the values
of Earth: R ⇤ 6.37122 · 106m, g ⇤ 9.80616m/s2 and ! ⇤ 7.29 · 10�5rad/s.
The bottom topography ⌧ ⇤ gb(x) is then generated by piecewise linear
interpolation of the ETOPO� Earth Relief dataset [���]. Moreover, we set
the water surface globally to '0 ⇤ 0m relative to sea level, thus ignoring
tidal effects. This approximation is acceptable as tidal effects are largely
irrelevant for the propagation of tsunamis.

�� Numerical Results ���

We use the icosahedral meshes as described in [��] and refine the mesh
uniformly until a prescribed refinement level of Luni is reached. Then,
we define a circular region of interest on the sphere defined by

�
x 2 S2(R) | dS2

�
x , x0

� ⇢ .
Here, dS2

�
., x0

�
is the great-circle distance with respect to a point x0 on

the sphere. The angle ⇢ specifies the radius of the area of interest. In this
region, the grid is further refined locally until a desired refinement level
of Lloc is reached. After static mesh refinement, the bottom topography
data is interpolated onto the locally refined grid in order to obtain
maximally accurate topography data. Throughout our experiments, we
set the filtering and wetting/drying parameters to s ⇤ 10, ↵ ⇤ 30 and
'tol ⇤ g · 10m.

Lake at rest solution

We seek to verify the theory developed in Chapter �� and Chapter �� by
verifying that the method is well-balanced on non-conforming, curved
meshes. To do so, we construct a non-conforming mesh by refining the
icosahedral mesh in a circular region with radius ⇢ ⇤ 40� and center
x0 at �10� longitude and �10� latitude. On this mesh, we initialize the
lake at rest solution and run the simulation until t ⇤ 10d is reached,
which exceeds the timescale of tsunami events. The results obtained
with various polynomial degrees at t ⇤ 5d and t ⇤ 10d are listed in
Table ��.�. We see that in all four cases, errors are close to accumulated
roundoff errors, which confirms that the method is well-balanced on
curved, non-conforming grids with bottom topography and dry cells in
the domain.

Adaptive mesh refinement

Before we move to simulations of actual tsunami events, we demonstrate
that the methods for non-conforming discretizations allow for adaptive
mesh refinement in a well-balanced manner. We re-use the same mesh
and generate a tsunami at 0� longitude and 0� latitude. For the initial
shape we choose a Gaussian of the form

' + ⌧ ⇤ '0 + 'a exp
⇣
��dS2

�
x , x0

� /⇢d
� 2

⌘
,

with a wave height of 'a ⇤ g · 10m and a width of ⇢d ⇤ 0.1rad. We
utilize adaptive mesh refinement every �� time steps, and adapt the mesh
based on a velocity criterion. According to this criterion, refinement or
coarsening is performed whenever the absolute velocity kuk2 exceeds or

Table ��.�: Relative errors for the lake at rest solution on the sphere at t ⇤ 5d and t ⇤ 10d with various polynomial orders.

L2 error EL2 ,⌦
Mass error E',⌦ Energy error EE,⌦

p t ⇤ 5d t ⇤ 10d t ⇤ 5d t ⇤ 10d t ⇤ 5d t ⇤ 10d
� 2.428 · 10�15 5.015 · 10�15 0.0 0.0 0.0 0.0
� 7.592 · 10�13 1.641 · 10�12 �3.324 · 10�15 6.980 · 10�14 �1.000 · 10�13 �1.239 · 10�13

� 8.388 · 10�13 1.828 · 10�12 2.350 · 10�14 2.085 · 10�15 �6.134 · 10�14 �1.023 · 10�13

� 6.957 · 10�13 2.858 · 10�13 �1.360 · 10�14 �5.247 · 10�14 �5.674 · 10�14 �7.318 · 10�14

�� Numerical Results ���

t ⇤ 0d t ⇤ 0.05d t ⇤ 0.1d

-�.� � �.�

Wave amplitude [m]

Figure ��.�: Adaptive simulation of a solitary wave at 0� longitude and 0� latitude. The mesh is refined adaptively using our well-balanced
mesh refinement. The corresponding video clip can be found bonevbs.github.io/files/amr_showcase.mp�.

Front side Back side

Figure ��.�: Mesh for the Tohoku tsunami
simulation using biquartic polynomials i.e.
p ⇤ 4. The mesh contains 14238 elements
with 25 collocation points in each element.

falls below the threshold of 0.01m/s. Figure ��.� depicts the numerical
solution at three different times. We observe that the mesh refinement is
handled in a robust manner without introducing any spurious waves
at non-conforming interfaces. Hence, this technique allows for dynam-
ically refined meshes, while preserving the well-balanced property of
the scheme. This potentially increases the efficiency of the method as
computational effort can be directed towards regions of interests which
require more accuracy.

Tsunami simulations

We seek to validate the capability of the algorithm through numerical
simulations of the ���� Tohoku tsunami event, which occurred off the
Japanese coast in ����. As an initial mesh, we use the unrefined icosahedral
mesh and locally refine the area of interest in the Pacific Ocean. We select
the point x0 at �177� longitude, 12� latitude and refine the initial grid
within a radius of ⇢ ⇤ 55� until a refinement level of Lloc ⇤ 5 is reached.
This amounts to a grid with a total of 14238 elements, most of which
are located within the region of interest in the Pacific Ocean., see Figure
��.�. Using this approach, we can automatically generate meshes that are
adapted to any region of interest and avoid boundary conditions at the
cost of a few extra elements on the back side of the sphere. Moreover, we

https://bonevbs.github.io/files/amr_showcase.mp4

�� Numerical Results ���

�

�

�

�

�

�

�

�

�

��

t ⇤ 0d t ⇤ 0.1d t ⇤ 0.2d

t ⇤ 0.3d t ⇤ 0.4d t ⇤ 0.5d

-����� �

Bathymetry [m]

-�.� � �.�

Wave amplitude [m]

Figure ��.��: High-fidelity simulation of the Tohoku tsunami event with K ⇤ 14238 and p ⇤ 4. The initial condition is taken to be a static
initial water surface displacement from the lake at rest steady state. The buoys are numbered in ascending order with respect to the tsunami
arrival times: � - DART �����, � - DART �����, � - DART �����, � - DART �����, � - DART �����, � - DART �����, � - DART �����, � -
DART �����, � - DART �����, �� - DART �����. The corresponding video clip can be found at bonevbs.github.io/files/tohoku.mp�.

would like to note that this type of mesh avoids the need for boundary
conditions, as needed if an artificial domain truncation was considered.

The initial condition is generated using the Okada model [���] and the
fault parameters of model III presented in [���]. For the moment, we are
not concerned with the tsunami source model and delay the discussion
of Okada soutions and tsunami sources to Section ��.�. For the moment,
we assume an instantaneous slip and calculate the final displacement of
the bottom topography, which is reached 200s after the earthquake has
occurred. The resulting bathymetry displacement is directly translated
to an initial displacement of the water surface.

Starting 200s after the initial earthquake at ����-�-�� ��:��:�� UTC, we
simulate 12h of tsunami propagation. We repeat the simulation twice;
once with biquadratic polynomials p ⇤ 2 and a second time with biquartic
polynomials p ⇤ 4. The simulations were run on a single core of an Intel
Xeon E�-���� v� processor, clocked at 3.40GHz. The simulation took
1h01m for p ⇤ 2 and 12h36m for p ⇤ 4. Figure ��.�� depicts our results
using biquartic polynomials. We observe that we are able to simulate 12h
of tsunami propagation in a stable manner. Moreover, visual comparison
of both solutions show no significant differences and we can expect our
method to be consistent under p-refinement.

This is further reinforced by our comparison with buoy data. In Figure

https://bonevbs.github.io/files/tohoku.mp4

�� Numerical Results ���

�1

0

1

2 DART �����

�0.5
0

0.5
1 DART �����

�0.2

0

0.2

0.4 DART �����

�0.2

0

0.2
DART �����

�0.2

0

0.2 DART �����

�0.2

0

0.2
DART �����

�0.1

0

0.1
DART �����

�0.1

0

0.1

0.2 DART �����

0:00 4:00 8:00 12:00

�0.2

0

0.2
DART �����

0:00 4:00 8:00 12:00

�0.2

0

0.2 DART �����

Time after earthquake [h]

W
av

e
am

pl
itu

de
s[

m
]

p ⇤ 2 p ⇤ 4 buoy data

Figure ��.��: Comparison of wave ampli-
tudes extracted from DART buoy data
to amplitudes extracted from the simula-
tions.

��.�� we show a comparison of real-world buoy data that was recorded
during the Tsunami event to wave amplitudes extracted from the nu-
merical simulations. We choose �� buoys, which are part of the DART
tsunami monitoring network [���] as reference. These buoys use pressure
data from the sea bottom to infer the wave amplitudes at the surface.
Their positions are marked as white dots in Figure ��.��. The oscillations
recorded early on by the sensors can therefore be ignored as they are
caused by seismic waves traveling through the Earth’s crust. Moreover,
our simulation does not take tidal effects into account, which we com-
pensate for by subtracting the time-averaged water height from the time
series of the buoy data.

As we can see from Figure ��.��, both simulations are able to accurately
predict arrival times even over long distances. At longer propagation
times, we observe a slight shift of both signals compared to the buoy
data. This phase shift is caused by unresolved bathymetry and becomes
noticeably smaller with the higher resolution simulation. Likewise, the
time series of the buoy data is matched more accurately by the higher-
order simulation. The incremental improvement in the time series from
p ⇤ 2 to p ⇤ 4 suggests that the method is indeed consistent.

Table ��.� summarizes the arrival times and states the absolute and rela-
tive errors in the amplitudes of the initial waves for the high-resolution

�� Numerical Results ���

buoy arrival time forecast amplitude error relative error
DART ����� ��:��:�� ��:��:�� �0.279m �0.149
DART ����� ��:��:�� ��:��:�� 0.297m 0.382
DART ����� ��:��:�� ��:��:�� 0.008m 0.024
DART ����� ��:��:�� ��:��:�� �0.079m �0.242
DART ����� ��:��:�� ��:��:�� �0.016m �0.195
DART ����� ��:��:�� ��:��:�� 0.054m 0.251
DART ����� ��:��:�� ��:��:�� �0.062m �0.505
DART ����� ��:��:�� ��:��:�� �0.033m �0.186
DART ����� ��:��:�� ��:��:�� �0.129m �0.415
DART ����� ��:��:�� ��:��:�� 0.020m 0.110

Table ��.�: Comparison of forecasted and
recorded tsunami arrival times. Absolute
and relative errors in the height of the
initial tsunami wave are also stated. The
results are extracted from the refined sim-
ulation using biquartic polynomials i.e.
p ⇤ 4.

simulation. As we have already observed in Figure ��.��, arrival times
are quite accurate in the near field but begin to diverge in the far field.
The largest error is smaller than � minutes, which is still quite accurate
considering the propagation time of more than � hours. Moreover, errors
in the predicted wave amplitudes do not exceed 0.3m even though the
waves propagate over thousands of kilometers. We remark that for both
arrival times and wave amplitudes, the largest errors occur in the signals
of DART ����� and DART �����. As previously mentioned, this is most
likely caused by underresolved bathymetry and uncertainties in the
initial condition. DART ����� is positioned close to the coast of Hawaii
and the tsunami has to travel along the Hawaiian-Emperor seamount
chain to reach it. Because the bathymetry is underresolved, small islands
in the path of the tsunami are missing. This can be expected to have a
noticable effect on the computed solution as these islands would nor-
mally cause reflections that are now missing. This is an interesting effect
as underresolved bathymetry would normally only cause refraction as
long as it is submerged. This only results in a phase error which we can
observe in the buoy data. Once the bathymetry reaches the water surface,
the wavespeed c ⇤

p
' becomes 0 and waves begin to be reflected. The

resulting error is more dramatic than a mere phase shift and we would
expect larger errors. Nevertheless, the time series data in Figure ��.��
indicates that the method is able to capture the physical effects accurately
enough to predict the long-term evolution of the tsunami waves.

Finally, we remark that the proposed method can be easily adapted to
allow well-balanced p-refinement. In this way, we could fully leverage
the flexibility of hp-adaptivity that discontinuous Galerkin methods
have to offer. This opens up the possibility of using elements with low
polynomial order in coastal areas, where h-refinement is preferable due
to the restrictions in accuracy caused by the wetting/drying process.
High-order approximations, on the other hand, retain their advantages
[��, ���] in the wet parts of the domain, as we have seen with the one-
dimensional examples. An hp-adaptive scheme would then allow to
leverage high-order elements in these areas where the solutions can be
expected to be smooth.

��.� Dynamic source models

In the previous section we have demonstrated the ability to accurately
model tsunami propagation on a large scale. The accuracy of the outcome
is fundamentally related to the quality of the initial conditions that are
used. This raises two questions; namely what kind of source model should
be considered and how the initial condition should be obtained. The latter

�� Numerical Results ���

�: Faults refer to the interface between
two blocks of rock. Slips refer to the dis-
placement of opposite sides of the fault.
Typically this happens in an abrupt man-
ner, which causes the earthquake.

question has been covered extensively in the literature and there exist a
variety of methods to do so. The main approach used in the literature
is seismic inversion, where the traces of the seismic waves are used to
reconstruct the original displacement of the sea bed displacement [���].
A notable approach in the context of tsunami simulation is described in
[���], which proposes to use incoming data from buoys in conjunction
with an adjoint model of the discontinuous Galerkin shallow water
model, to directly reconstruct the initial conditions.

For the source model, there are essentially two approaches. The first
approach is to assume that the timescales of the slip process � are much
faster than the timescales of the wave propagation. Under this assumption,
we only need to know how the bottom topography is deformed due to the
slip to impose this deformation on the water surface height. We therefore
replace ⌧with ⌧0, which is the updated bottom topography due to the slip.
The new water surface height is then ' + ⌧0. In other words, the water
waves had no time to react to the instantaneous change in the bottom
topography and the change in the sea surface height is instantaneous. To
model the deformation of the seabed, one often assumes that it can be
written as a sum of so-called Okada solutions, which model the static
deformation on the surface due to dislocations in the halfspace beneath
it [���, ���]. Consequently, we write the displacement of the seabed as

⌧0(x) � ⌧(x) ⇤
nfaultsX
i⇤1

Oi(x), (��.�)

where Oi(x) denote the Okada solutions. Each of them is associated
to one single dislocation out of nfaults dislocations beneath the seabed
surface. These dislocations are therefore called subfaults. We avoid going
into further details on the geophysical models and instead refer the
reader to the original paper [���].

One alternative approach to this static model is to consider a dynamic
rupture model, which allows the bottom topography to vary in time. A
possible approach to model the dynamic fault process is to activate each
Okada solution separately using an individual activation function �i(t)
for each subfault [���, ���]. The resulting time-dependent deformation
of the seabed can therefore be written as

⌧0(x , t) � ⌧(x) ⇤ �(x , t) ⇤
nfaultsX
i⇤1
�i(t)Oi(x). (��.�)

A possible choice for the activation function is the piecewise linear
activation function

�i(t) ⇤
8>>><
>>>:

0 t t0,i
t�t0,i

t1,i�t0,i
t0,i t t1,i

1 t1,i t

,

where t0,i amd t1,i denote the start and end times of the slip process
occuring at the i-th subfault [���]. In the following, we use this simple
dynamic fault model to evaluate the influence of the seabed dynamics on
the tsunami simulation and resulting predictions. To do so, we compare
results obtained with both dynamic and static source models for the ����
Tohoku tsunami event, as well as the ���� Sumatra-Andaman tsunami.

�� Numerical Results ���

0:00 2:00 4:00 6:00

�1

0

1

2

0:12 0:42 1:12

�1

0

1

2

Time after earthquake [h]

W
av

e
am

pl
itu

de
s[

m
]

static source model dynamic source model buoy data

Figure ��.��: Comparison of wave ampli-
tudes extracted from DART buoy �����
during the Tohoku tsunami event to wave
amplitudes computed with the static and
dynamic source models. On the right the
signal is zoomed in to better depict the
initial wave.

Comparison of source models for the Tohoku tsunami

We repeat the previous experiment of Section ��.� and simulate the ����
Tohoku tsunami event. As source model, we re-use the model from
[���] as before. This time, however, we also use the dynamic parameters
listed in [���] to be able to compare both source models. These models
contain a total number of nfaults ⇤ 190 subfaults and the rupture process
is basically static after 105 seconds. To facilitate this in our model, we
run the simulation at smaller timesteps until the rupture process is
completed.

The resulting simulation is visually indistinguishable to the results shown
in Figure ��.�� and the resulting differences in wave signals is extremely
small. To compare both models, we use the extracted wave signals at
DART buoy positions. Figure ��.�� depicts the signal of DART �����, as
well as the wave signals extracted from simulations using both source
models. The differences are small and both source models produce almost
identical solutions with only a small difference in the phase.

However, the dynamic source model is able to better approximate the
arrival time with a smaller phase error, while the static model seems
to better predict the amplitude of the initial wave. Similar comparisons
for other buoys in the wave field show similar, but small differences
between both models. From this test case alone we conclude that the static
fault model is good enough and that the dynamic model does not offer
significant improvements. In fact, it is likely that most rupture processes
and tsunami formations can be well-approximated with an instantaneous
slip as the assumption that the change in bottom topography results in
an equally instantaneous change at the water surface, is reasonable for
most scenarios.

Comparison of source models for the Sumatra-Andaman
tsunami

A notable exception to this is the Sumatra-Andaman tsunami, which is
known to have had a notably slow rupture that lasted approximately 10
minutes. Moreover the spatial distribution of the slips spans approxi-
mately ���� km, resulting in a potentially complex dynamical formation
of the tsunami. While this alone should make it interesting for our
investigation, there is also a larger uncertainty in the initial parame-
ters computed by seismic inversion and various source models have
been proposed in the literature [���–���]. This illustrates the difficulty

�� Numerical Results ���

t ⇤ 0d t ⇤ 0.02d

t ⇤ 0.08d t ⇤ 0.32d

-����� �

Bathymetry [m]

-�.� � �.�

Wave amplitude [m]

Figure ��.��: High-fidelity discontinu-
ous Galerkin simulation of the Sumatra-
Andaman tsunami with a locally refined
mesh using K ⇤ 30378 elements and a
polynomial degree of p ⇤ 4.

T
O

P
E

X
/

P
o
s
e
id

o
n

Ja
s
o
n
-�

S
u

b
fa

u
lts

Indian Subcontinent

80 85 90 95 100

0

10

20

Longitude [°]

L
a
ti

tu
d

e
[°]

�5 0 5 10

Displacement [m]

Figure ��.��: Location of the subfaults
for the Sumatra-Andaman tsunami. The
red and blue points illustrate the position
of the satellite radio altimetry measure-
ments.

of determining source parameters using seismic inversion. Using one
dataset over another will likely imply that the resulting sources will yield
diverging results when compared to one another [���].

For our purpose, we use fault parameters from [���]. For the dynamic
fault model we use parameters as listed in [���]. Figure ��.�� shows
the the subfaults which are located between the Andaman Islands and
Sumatra in the Bay of Bengal. The subfaults are numbered in increasing
order from south to west, which coincides with the order in which they
are activated. Table ��.� lists the subfault parameters, complete with their
activation times t0,i and rise times t1,i � t0,i . We observe the slow nature
of the rupture, with more than ��� seconds between the activation of the
first subfault and the last one.

To simulate the Sumatra-Andaman tsunami, we use an icosahedral
mesh and locally refine a circular area of radius ⇢ ⇤ 40� around the
point at 84� longitude and �10� latitude. This results in a mesh with a
total number of K ⇤ 30378 elements, where most of them are located
in the Indian Ocean. Figure ��.�� shows the results of the simulation
using a polynomial degree of p ⇤ 4 and the dynamic source model. The
simulation is repeated with a static seabed deformation, in which we
impose the final seabed deformation on the sea surface.

As before, we use real-world data as a reference for our results. Because
there is little buoy data available, we use sea surface heights reconstructed
from satellite data. Here, we use radio altimetry data obtained from the
Jason-� and TOPEX/Poseidon earth observation satellites [���], which
passed over the tsunami from south west to north east, as illustrated in

�� Numerical Results ���

�10 0 10 20

�0.5

0

0.5

�10 0 10 20

�0.5

0

0.5

Latitude [°]

W
av

e
am

pl
itu

de
s[

m
]

Fujii and Satake [���] Gopinathan et al. [���]
Our model Jason-� data

Figure ��.��: Comparison of the wave
field cross section to satellite measure-
ments and results obtained by others.

Figure ��.��. As such, it represents a cross section of the wave field, rather
than a wave signal arriving over time at one point. The results are shown
in Figure ��.�� alongside predictions from Fujii and Satake [���], as well
as Gopinathan et al. [���]. Fujii and Satake [���] use a finite difference
method for the linearized shallow water equations, whereas Gopinathan
et al. [���] use a finite volume solver for the non-linear shallow water
equations. We observe good agreement of all methods, especially for
arrival times and amplitudes of the first wave. In the far-field we observe
that the proposed method captures wave amplitudes remarkably well,
with a slight error in phase which can likely be attributed to underresolved
bathymetry.

To quantify the impact of the dynamic source model, we compare the
results to simulation results obtained with a static source. Figure ��.��
depicts a comparison of the aforementioned satellite data to the cor-
responding cross sections in the wavefield, extracted from our two
simulations. Again, for both models, we observe a good match of phase
and amplitude of the leading wave. This time however, the dynamic
source model is able to better predict phase and amplitude, especially for
the leading wave. This is also reflected in the L2 errors of the aforemen-
tioned signals. For the TOPEX/Poseidon data the normalized errors are
0.2775 and 0.1527 for the static and dynamic models respectively. For the
Jason-� data however, the errors for both models are 0.2047 and 0.2048
and therefore practically identical. While the improvement using the
dynamic method seems small, we have to keep in mind that the satellite
data only provides a one-dimensional extract of the wave-field to assess
the accuracy of the results. As such, we conclude that a dynamic source

Table ��.�: Subfault parameters and activation times for the simulation of the SumatraAndaman tsunami. Subfaults are ordered according
to latitude from south to north.

subfault longitude latitude depth length width strike dip rake slip t0,i t1,i � t0,i
� 95.54 2.13 10 100 150 290 10 71 16.5 0.00 48.5
� 94.5 2.57 10 100 150 310 10 91 0 31.96 48.5
� 93.64 3.33 10 100 150 330 10 104 14.9 136.85 37.5
� 94.5 4.15 10 100 150 340 10 105 29.1 167.62 117.3
� 94.5 5.18 10 100 150 345 10 102 10.4 227.09 138.7
� 94.5 6.12 10 100 150 350 10 100 23.4 254.98 62.1
� 94.5 6.78 10 100 150 330 10 90 9.4 282.41 38.5
� 94.5 7.64 10 100 150 335 10 86 11.5 308.57 111.2
� 94.5 8.60 10 100 150 350 10 99 1.5 334.06 63.9
�� 94.5 9.60 10 100 150 0 10 106 12 396.16 51.3
�� 94.5 10.66 10 100 150 10 10 115 6.1 433.33 79.0
�� 94.5 11.56 10 100 150 10 10 115 25.7 467.73 54.6
�� 94.5 12.51 10 100 150 15 10 120 27.2 502.11 76.8
�� 94.5 13.51 10 100 150 25 10 130 0 583.82 36.6

�� Numerical Results ���

�10 0 10 20

�0.5

0

0.5
Jason-�

�10 �5 0 5

�1

�0.5

0

0.5

1
TOPEX/Poseidon

Latitude [°]

W
a
v

e
a
m

p
li

tu
d

e
s

[m
]

static source model dynamic source model buoy data

Figure ��.��: Comparison of wave am-
plitudes measured by the Jason-� and
TOPEX/Poseidon satellites compared to
signals extracted from our simulation us-
ing. On the right the signal is zoomed in
to show the initial wave.

model can indeed improve the predictions of the model in situations
where the rupture process is small.

��.� Concluding remarks

We have presented an efficient discontinuous Galerkin model for mod-
eling geophysical flows on the rotating sphere using the shallow water
equations. To do so, we have developed well-balanced methods for
wetting/drying as well as grid adaptation. Moreover, we have made a
case for using the strong form of the discontinuous Galerkin formulation,
due to its favorable properties. Using one-dimensional examples and
examples on the sphere, we have verified these methods, proving the
properties that we have previously claimed. In addition to this, we have
validated the approach through real-world examples in the form of
simulations of the ���� Tohoku tsunami and the ���� Indian Ocean
tsunami. Finally, we performed a comparison of source models to see
whether they could offer improvements by incorporating dynamic effects
of the rupture process into the existing model.

The developed methods have proven to work well and produce physi-
cally accurate results of predictive value. While the dynamic effects of
tsunami sources may play an important role for slow ruptures, they
can be neglected in most scenarios. It is therefore possible, that other
improvements such as non-hydrostatic corrections are of greater benefits
for these models.

Our contributions relating well-balancing and wetting/drying offer
an interesting choice for discontinuous Galerkin models based on the
shallow water equations and potentially other physical systems. This
includes the Euler equations where near-vacuum solutions pose similar
challenges as drying processes in shallow water systems. To the best of
our knowledge, most alternatives for wetting/drying often incorporate
unphysical assumptions or are simply not well-balanced. Interesting
research avenues are therefore the applicability of these methods to other
systems of conservation laws with similar problems.

The tsunami model that we have developed using these ideas demon-
strates a range of desireable properties for an early warning system.
Not only are the predictions physically accurate but the overall method
is also robust, highly adaptable and efficient due to the well-balanced
mesh refinement. This allows for automatic generation of grids adapted
to the problem, an essential requirement for any early warning system

�� Numerical Results ���

that needs to function without human intervention. Moreover, we have
proven that our mildly optimized and non-parallel implementation can
yield physically accurate results faster than real-time, which is another
necessary property for any early warning system. Our implementation
could easily be accelerated further due to the intrinsic flexibility and
parallelity of discontinuous Galerkin methods.

Bibliography

[�] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. ���� (cited on pages ix, �, ��, ��).
[�] Boris Bonev et al. ‘Discontinuous Galerkin scheme for the spherical shallow water equations with

applications to tsunami modeling and prediction’. In: Journal of Computational Physics (����). ���:
10.1016/j.jcp.2018.02.008 (cited on pages ix, ���, ���).

[�] Mahya Hajihassanpour, Boris Bonev, and Jan S. Hesthaven. ‘A comparative study of earthquake
source models in high-order accurate tsunami simulations’. In: Ocean Modelling ���.August (Sept.
����), p. ������. ���: 10.1016/j.ocemod.2019.101429 (cited on page ix).

[�] Boris Bonev and Jan S. Hesthaven. ‘A hierarchical preconditioner for wave problems in quasilinear
complexity’. In: ������ (May ����), pp. �–�� (cited on page ix).

[�] Sangmin Kwak, Youngseo Kim, and Changsoo Shin. ‘Frequency-domain direct waveform inversion
based on perturbation theory’. In: Geophysical Journal International ���.� (May ����), pp. ���–����. ���:
10.1093/gji/ggu026 (cited on pages �, ��).

[�] Claes Johnson. Numerical Solution of Partial Differential Equations by the Finite Element Method. New
York, NY: Cambridge University Press, ���� (cited on page �).

[�] L C Evans. Partial Differential Equations. American Mathematical Society, ���� (cited on pages �, �, ��,
���, ���).

[�] J T Oden and L Demkowicz. Applied Functional Analysis, Third Edition. Textbooks in Mathematics.
CRC Press, ���� (cited on pages �, �).

[�] Alexandre Ern and Jean-Luc Guermond. Theory and Practice of Finite Elements. Vol. ���. Applied
Mathematical Sciences. New York, NY: Springer New York, ����, pp. xiv+��� (cited on page �).

[��] George B Arfken, Hans J Weber, and Frank E Harris. Mathematical Methods for Physicists. Seventh Ed.
Elsevier, ����, pp. ���–��� (cited on page �).

[��] Daniel Kressner and Robert Luce. Computational Linear Algebra. ���� (cited on pages �, ��, ��, ��).
[��] G H Golub and C F Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical

Sciences. Johns Hopkins University Press, ���� (cited on pages �, ��, ��, ��, ��).
[��] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, Dec. ���� (cited

on pages �, ��).
[��] Steven S. Skiena. The algorithm design manual: Second edition. ����, pp. �–��� (cited on pages ��, ��).
[��] Ming Gu and Stanley C. Eisenstat. ‘Efficient algorithms for computing a strong rank-revealing QR

factorization’. In: SIAM Journal of Scientific Computing ��.� (����), pp. ���–���. ���: 10.1137/0917055
(cited on pages ��, ��).

[��] Tony F. Chan. ‘Rank revealing QR factorizations’. In: Linear Algebra and its Applications ��-��.C (Apr.
����), pp. ��–��. ���: 10.1016/0024-3795(87)90103-0 (cited on page ��).

[��] N. Halko, P.-G. Martinsson, and J. A. Tropp. ‘Finding Structure with Randomness: Probabilistic
Algorithms for Constructing Approximate Matrix Decompositions’. In: SIAM Review ��.� (Jan. ����),
pp. ���–���. ���: 10.1137/090771806 (cited on pages ��, ��, ��, ��).

[��] M.F. Hutchinson. ‘A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines’. In: Communications in Statistics - Simulation and Computation ��.� (Jan. ����), pp. ���–���. ���:
10.1080/03610919008812866 (cited on page ��).

[��] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford University Press,
Jan. ���� (cited on page ��).

[��] E. Cuthill and J. McKee. ‘Reducing the bandwidth of sparse symmetric matrices’. In: Proceedings of the
���� ��th National Conference, ACM ���� (����), pp. ���–���. ���: 10.1145/800195.805928 (cited on
pages ��, ��).

https://doi.org/10.1016/j.jcp.2018.02.008
https://doi.org/10.1016/j.ocemod.2019.101429
https://doi.org/10.1093/gji/ggu026
https://doi.org/10.1137/0917055
https://doi.org/10.1016/0024-3795(87)90103-0
https://doi.org/10.1137/090771806
https://doi.org/10.1080/03610919008812866
https://doi.org/10.1145/800195.805928

[��] Alan George. ‘Nested Dissection of a Regular Finite Element Mesh’. In: SIAM Journal on Numerical
Analysis ��.� (Apr. ����), pp. ���–���. ���: 10.1137/0710032 (cited on pages ��, ��).

[��] Alan J. Hoffman, Michael S. Martin, and Donald J. Rose. ‘Complexity Bounds for Regular Finite
Difference and Finite Element Grids’. In: SIAM Journal on Numerical Analysis ��.� (Apr. ����), pp. ���–
���. ���: 10.1137/0710033 (cited on page ��).

[��] Alan George and Joseph W.H. Liu. ‘The Evolution of the Minimum Degree Ordering Algorithm’. In:
SIAM Review ��.� (Mar. ����), pp. �–��. ���: 10.1137/1031001 (cited on page ��).

[��] Joseph W.H. Liu. ‘The Multifrontal Method for Sparse Matrix Solution: Theory and Practice’. In: SIAM
Review ��.� (May ����), pp. ��–��� (cited on page ��).

[��] Per-Gunnar Martinsson. ‘Fast Direct Solvers for Elliptic PDEs’. In: Philadelphia, PA: Society for
Industrial and Applied Mathematics, Jan. ����, pp. i–xv. ���: 10.1137/1.9781611976045 (cited on
pages ��, ��, ��, ��, ��, ��, ��, ��, ��, ��, ��–��).

[��] Yousef Saad. ‘Iterative Methods for Sparse Linear Systems, Second Edition’. In: Methods (����), p. ���
(cited on pages ��, ��).

[��] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik. ‘A novel multigrid based preconditioner for heteroge-
neous Helmholtz problems’. In: SIAM Journal on Scientific Computing ��.� (����), pp. ����–����. ���:
10.1137/040615195 (cited on page ��).

[��] C. W. Oosterlee et al. ‘Shifted-Laplacian Preconditioners for Heterogeneous Helmholtz Problems’.
In: Lecture Notes in Electrical Engineering. Vol. �� LNCSE. ����, pp. ��–��. ���: 10.1007/978-3-642-
03344-5_2 (cited on page ��).

[��] G.P. Astrakhantsev. ‘An iterative method of solving elliptic net problems’. In: USSR Computational
Mathematics and Mathematical Physics ��.� (Jan. ����), pp. ���–���. ���: 10.1016/0041-5553(71)90170-4
(cited on page ��).

[��] Wolfgang Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Vol. ��. Springer Series in
Computational Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, ����, pp. ��–�� (cited
on pages ��–��, ��, ��).

[��] V. Rokhlin. ‘Rapid solution of integral equations of classical potential theory’. In: Journal of Computa-
tional Physics ��.� (Sept. ����), pp. ���–���. ���: 10.1016/0021-9991(85)90002-6 (cited on pages ��,
��, ��).

[��] L. Greengard and V. Rokhlin. ‘A fast algorithm for particle simulations’. In: Journal of Computational
Physics ���.� (����), pp. ���–���. ���: 10.1006/jcph.1997.5706 (cited on pages ��, ��).

[��] David J. Griffiths. Introduction to Electrodynamics. Cambridge University Press, June ���� (cited on
page ��).

[��] D.E. Winch and P.H. Roberts. ‘Derivatives of addition theorems for Legendre functions’. In: The
Journal of the Australian Mathematical Society. Series B. Applied Mathematics ��.� (Oct. ����), pp. ���–���.
���: 10.1017/S0334270000007670 (cited on page ��).

[��] S. Chandrasekaran et al. ‘A fast solver for HSS representations via sparse matrices’. In: SIAM Journal
on Matrix Analysis and Applications ��.� (����), pp. ��–��. ���: 10.1137/050639028 (cited on page ��).

[��] Sia Amini and Anthony Profit. ‘Analysis of the truncation errors in the fast multipole method for
scattering problems’. In: Journal of Computational and Applied Mathematics ���.�-� (Mar. ����), pp. ��–��.
���: 10.1016/S0377-0427(99)00175-2 (cited on page ��).

[��] Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch. ‘Introduction to hierarchical matrices with
applications’. In: Engineering Analysis with Boundary Elements ��.� (May ����), pp. ���–���. ���:
10.1016/S0955-7997(02)00152-2 (cited on pages ��, ��).

[��] Steffen Börm. Hierarchical Matrices. Vol. ��. Lecture Notes in Computational Science and Engineering.
Berlin, Heidelberg: Springer Berlin Heidelberg, ���� (cited on page ��).

[��] Patrick R. Amestoy et al. ‘Bridging the Gap Between Flat and Hierarchical Low-Rank Matrix Formats:
The Multilevel Block Low-Rank Format’. In: SIAM Journal on Scientific Computing ��.� (Jan. ����),
A����–A����. ���: 10.1137/18M1182760 (cited on page ��).

https://doi.org/10.1137/0710032
https://doi.org/10.1137/0710033
https://doi.org/10.1137/1031001
https://doi.org/10.1137/1.9781611976045
https://doi.org/10.1137/040615195
https://doi.org/10.1007/978-3-642-03344-5_2
https://doi.org/10.1007/978-3-642-03344-5_2
https://doi.org/10.1016/0041-5553(71)90170-4
https://doi.org/10.1016/0021-9991(85)90002-6
https://doi.org/10.1006/jcph.1997.5706
https://doi.org/10.1017/S0334270000007670
https://doi.org/10.1137/050639028
https://doi.org/10.1016/S0377-0427(99)00175-2
https://doi.org/10.1016/S0955-7997(02)00152-2
https://doi.org/10.1137/18M1182760

[��] Steffen Börm. Efficient Numerical Methods for Non-local Operators. Zuerich, Switzerland: European
Mathematical Society Publishing House, Dec. ���� (cited on pages ��, ��, ��, ��, ��).

[��] Raf Vandebril, Marc Van Barel and Nicola Mastronardi. Matrix Computations and Semiseparable Matrices
- Linear Systems. �st ed. Johns Hopkins University Press, ����, p. ��� (cited on pages ��, ��).

[��] James Vogel et al. ‘Superfast Divide-and-Conquer Method and Perturbation Analysis for Structured
Eigenvalue Solutions’. In: SIAM Journal on Scientific Computing ��.� (Jan. ����), A����–A����. ���:
10.1137/15M1018812 (cited on pages ��, ��).

[��] Yuanzhe Xi et al. ‘Superfast and Stable Structured Solvers for Toeplitz Least Squares via Randomized
Sampling’. In: SIAM Journal on Matrix Analysis and Applications ��.� (Jan. ����), pp. ��–��. ���:
10.1137/120895755 (cited on page ��).

[��] Daniel Kressner, Stefano Massei, and Leonardo Robol. ‘Low-Rank Updates and a Divide-And-
Conquer Method for Linear Matrix Equations’. In: SIAM Journal on Scientific Computing ��.� (Jan. ����),
A���–A���. ���: 10.1137/17M1161038 (cited on page ��).

[��] Stefano Massei, Leonardo Robol, and Daniel Kressner. hm-toolbox: MATLAB SOFTWARE FOR HODLR
AND HSS MATRICES. Tech. rep. (cited on pages ��, ��, ��, ��, ��, ��, ��).

[��] Boris Bonev. ‘HssMatrices.jl: A Julia package for hierarchically semi-separable matrices’. In: (Apr.
����). ���: 10.5281/ZENODO.4696465 (cited on pages ��, ��, ��, ��, ��, ��).

[��] S Chandrasekaran, M Gu, and T Pals. ‘A Fast ULV Decomposition Solver for Hierarchically Semisep-
arable Representations’. In: SIAM Journal on Matrix Analysis and Applications ��.� (Jan. ����), pp. ���–
���. ���: 10.1137/S0895479803436652 (cited on pages ��, ��, ��).

[��] Difeng Cai et al. ‘SMASH: Structured matrix approximation by separation and hierarchy’. In: arXiv
(����) (cited on page ��).

[��] Jianlin Xia et al. ‘Fast algorithms for hierarchically semiseparable matrices’. In: Numerical Linear
Algebra with Applications ��.� (Dec. ����), pp. ���–���. ���: 10.1002/nla.691 (cited on pages ��, ��).

[��] Per-Gunnar Martinsson. ‘A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable
Representation of a Matrix’. In: SIAM Journal on Matrix Analysis and Applications ��.� (Oct. ����),
pp. ����–����. ���: 10.1137/100786617 (cited on pages ��, ��).

[��] Xiao Liu, Jianlin Xia, and Maarten V. De Hoop. ‘Parallel randomized and matrix-free direct solvers for
large structured dense linear systems’. In: SIAM Journal on Scientific Computing ��.� (����), S���–S���.
���: 10.1137/15M1023774 (cited on pages ��, ��).

[��] Christopher Gorman et al. ‘Robust and Accurate Stopping Criteria for Adaptive Randomized Sampling
in Matrix-Free Hierarchically Semiseparable Construction’. In: SIAM Journal on Scientific Computing
��.� (Jan. ����), S��–S��. ���: 10.1137/18M1194961 (cited on page ��).

[��] Lin Lin, Jianfeng Lu, and Lexing Ying. ‘Fast construction of hierarchical matrix representation from
matrixvector multiplication’. In: Journal of Computational Physics ���.�� (May ����), pp. ����–����. ���:
10.1016/j.jcp.2011.02.033 (cited on page ��).

[��] Mario Bebendorf and Wolfgang Hackbusch. ‘Existence of H-matrix approximants to the inverse
FE-matrix of elliptic operators with L-coefficients’. In: Numerische Mathematik ��.� (July ����), pp. �–��.
���: 10.1007/s00211-002-0445-6 (cited on pages ��, ��).

[��] Mario Bebendorf. ‘Efficient inversion of the Galerkin matrix of general second-order elliptic operators
with nonsmooth coefficients’. In: Mathematics of Computation ��.��� (Sept. ����), pp. ����–����. ���:
10.1090/s0025-5718-04-01716-8 (cited on pages ��, ��).

[��] Mario Bebendorf. ‘Why finite element discretizations can be factored by triangular hierarchical
matrices’. In: SIAM Journal on Numerical Analysis ��.� (����), pp. ����–����. ���: 10.1137/060669747
(cited on pages ��, ��).

[��] Per-Gunnar Martinsson. ‘A Fast direct solver for a class of elliptic partial differential equations’. In:
Journal of Scientific Computing ��.� (����), pp. ���–���. ���: 10.1007/s10915-008-9240-6 (cited on
pages ��, ��).

https://doi.org/10.1137/15M1018812
https://doi.org/10.1137/120895755
https://doi.org/10.1137/17M1161038
https://doi.org/10.5281/ZENODO.4696465
https://doi.org/10.1137/S0895479803436652
https://doi.org/10.1002/nla.691
https://doi.org/10.1137/100786617
https://doi.org/10.1137/15M1023774
https://doi.org/10.1137/18M1194961
https://doi.org/10.1016/j.jcp.2011.02.033
https://doi.org/10.1007/s00211-002-0445-6
https://doi.org/10.1090/s0025-5718-04-01716-8
https://doi.org/10.1137/060669747
https://doi.org/10.1007/s10915-008-9240-6

[��] S Chandrasekaran et al. ‘On the Numerical Rank of the Off-Diagonal Blocks of Schur Complements
of Discretized Elliptic PDEs’. In: SIAM Journal on Matrix Analysis and Applications ��.� (Jan. ����),
pp. ����–����. ���: 10.1137/090775932 (cited on page ��).

[��] Björn Engquist and Hongkai Zhao. ‘Approximate Separability of the Green’s Function of the Helmholtz
Equation in the High Frequency Limit’. In: Communications on Pure and Applied Mathematics ��.�� (Nov.
����), pp. ����–����. ���: 10.1002/cpa.21755 (cited on pages ��, ��).

[��] Jianlin Xia et al. ‘Superfast Multifrontal Method for Large Structured Linear Systems of Equations’. In:
SIAM Journal on Matrix Analysis and Applications ��.� (Jan. ����), pp. ����–����. ���: 10.1137/09074543X
(cited on pages ��, ��).

[��] Phillip G. Schmitz and Lexing Ying. ‘A fast direct solver for elliptic problems on general meshes in
�D’. In: Journal of Computational Physics ���.� (����), pp. ����–����. ���: 10.1016/j.jcp.2011.10.013
(cited on pages ��, ��).

[��] Jianlin Xia. ‘Randomized Sparse Direct Solvers’. In: SIAM Journal on Matrix Analysis and Applications
��.� (Jan. ����), pp. ���–���. ���: 10.1137/12087116X (cited on pages ��, ��).

[��] Jianlin Xia. ‘Efficient Structured Multifrontal Factorization for General Large Sparse Matrices’. In:
SIAM Journal on Scientific Computing ��.� (Jan. ����), A���–A���. ���: 10.1137/120867032 (cited on
pages ��, ��).

[��] A. Gillman and P.-G. Martinsson. ‘A Direct Solver with O(N) Complexity for Variable Coefficient
Elliptic PDEs Discretized via a High-Order Composite Spectral Collocation Method’. In: SIAM Journal
on Scientific Computing ��.� (Jan. ����), A����–A����. ���: 10.1137/130918988 (cited on page ��).

[��] Shen Wang et al. ‘A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable
Structure’. In: ACM Transactions on Mathematical Software ��.� (June ����), pp. �–��. ���: 10.1145/
2830569 (cited on pages ��, ��).

[��] Pieter Ghysels et al. ‘An Efficient Multicore Implementation of a Novel HSS-Structured Multifrontal
Solver Using Randomized Sampling’. In: SIAM Journal on Scientific Computing ��.� (Jan. ����), S���–
S���. ���: 10.1137/15M1010117 (cited on pages ��, ��).

[��] P. Gatto and J. S. Hesthaven. ‘Efficient Preconditioning of hp-FEM Matrices by Hierarchical Low-Rank
Approximations’. In: Journal of Scientific Computing ��.� (July ����), pp. ��–��. ���: 10.1007/s10915-
016-0347-x (cited on pages ��, ��).

[��] Kai Yang, Hadi Pouransari, and Eric Darve. ‘Sparse hierarchical solvers with guaranteed convergence’.
In: International Journal for Numerical Methods in Engineering ���.� (����), pp. ���–���. ���: 10.1002/
nme.6166 (cited on pages ��, ��).

[��] D. E. Keyes, H. Ltaief, and G. Turkiyyah. ‘Hierarchical algorithms on hierarchical architectures’. In:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences ���.����
(Mar. ����), p. ��������. ���: 10.1098/rsta.2019.0055 (cited on page ��).

[��] Miroslav Fiedler. ‘Structure ranks of matrices’. In: Linear Algebra and its Applications ���.C (Jan. ����),
pp. ���–���. ���: 10.1016/0024-3795(93)90324-H (cited on page ��).

[��] Fuzhen Zhang, ed. The Schur Complement and Its Applications. Vol. �. Numerical Methods and
Algorithms. New York: Springer-Verlag, ���� (cited on page ��).

[��] M. Bebendorf. ‘Hierarchical LU Decomposition-based Preconditioners for BEM’. In: Computing ��.�
(May ����), pp. ���–���. ���: 10.1007/s00607-004-0099-6 (cited on pages ��, ��).

[��] Adrianna Gillman, Patrick M. Young, and Per-Gunnar Martinsson. ‘A direct solver with O(N)
complexity for integral equations on one-dimensional domains’. In: Frontiers of Mathematics in China
�.� (Apr. ����), pp. ���–���. ���: 10.1007/s11464-012-0188-3 (cited on pages ��, ��).

[��] Adrianna Gillman and Per-Gunnar Martinsson. ‘An O(N) algorithm for constructing the solution
operator to �D elliptic boundary value problems in the absence of body loads’. In: Advances in
Computational Mathematics ��.� (Aug. ����), pp. ���–���. ���: 10.1007/s10444-013-9326-z (cited on
pages ��, ��).

https://doi.org/10.1137/090775932
https://doi.org/10.1002/cpa.21755
https://doi.org/10.1137/09074543X
https://doi.org/10.1016/j.jcp.2011.10.013
https://doi.org/10.1137/12087116X
https://doi.org/10.1137/120867032
https://doi.org/10.1137/130918988
https://doi.org/10.1145/2830569
https://doi.org/10.1145/2830569
https://doi.org/10.1137/15M1010117
https://doi.org/10.1007/s10915-016-0347-x
https://doi.org/10.1007/s10915-016-0347-x
https://doi.org/10.1002/nme.6166
https://doi.org/10.1002/nme.6166
https://doi.org/10.1098/rsta.2019.0055
https://doi.org/10.1016/0024-3795(93)90324-H
https://doi.org/10.1007/s00607-004-0099-6
https://doi.org/10.1007/s11464-012-0188-3
https://doi.org/10.1007/s10444-013-9326-z

[��] Jianlin Xia. ‘Efficient Structured Multifrontal Factorization for General Large Sparse Matrices’. In:
SIAM Journal on Scientific Computing ��.� (Jan. ����), A���–A���. ���: 10.1137/120867032 (cited on
pages ��, ��).

[��] AmirHossein Aminfar, Sivaram Ambikasaran, and Eric Darve. ‘A fast block low-rank dense solver
with applications to finite-element matrices’. In: Journal of Computational Physics ��� (Jan. ����),
pp. ���–���. ���: 10.1016/j.jcp.2015.10.012 (cited on page ��).

[��] Hadi Pouransari, Pieter Coulier, and Eric Darve. ‘Fast Hierarchical Solvers For Sparse Matrices Using
Extended Sparsification and Low-Rank Approximation’. In: SIAM Journal on Scientific Computing ��.�
(Jan. ����), A���–A���. ���: 10.1137/15M1046939 (cited on page ��).

[��] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods. Vol. ��. Texts in Applied
Mathematics �. New York, NY: Springer New York, ����, pp. ���–�� (cited on pages ��, ��, ���, ���,
���, ���, ���).

[��] Frank Ihlenburg and I. Babuka. ‘Finite element solution of the Helmholtz equation with high wave
number Part I: The h-version of the FEM’. In: Computers & Mathematics with Applications ��.� (Nov.
����), pp. �–��. ���: 10.1016/0898-1221(95)00144-N (cited on page ��).

[��] Ivo M. Babuka and Stefan A Sauter. ‘Is the Pollution Effect of the FEM Avoidable for the Helmholtz
Equation Considering High Wave Numbers?’ In: SIAM Journal on Numerical Analysis ��.� (Dec. ����),
pp. ����–����. ���: 10.1137/S0036142994269186 (cited on page ��).

[��] Timo. Lähivaara. ‘Discontinuous Galerkin Method for Time-domain Wave Problems’. PhD thesis.
����, pp. �–�� (cited on page ��).

[��] M. J. Gander, I. G. Graham, and E. A. Spence. ‘Applying GMRES to the Helmholtz equation with shifted
Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence
is guaranteed?’ In: Numerische Mathematik ���.� (����), pp. ���–���. ���: 10.1007/s00211-015-0700-2
(cited on page ��).

[��] Clint Dawson, Shuyu Sun, and Mary F. Wheeler. ‘Compatible algorithms for coupled flow and
transport’. In: Computer Methods in Applied Mechanics and Engineering ���.��-�� (����), pp. ����–����.
���: 10.1016/j.cma.2003.12.059 (cited on page ��).

[��] Yohann Dudouit. ‘Spatio-temporal refinement using a discontinuous Galerkin approach for elasto-
dynamic in a high performance computing framework’. In: Université De Bordeaux (����) (cited on
page ��).

[��] Gary S. Martin, Robert Wiley, and Kurt J. Marfurt. ‘Marmousi�: An elastic upgrade for Marmousi’. In:
The Leading Edge ��.� (Feb. ����), pp. ���–���. ���: 10.1190/1.2172306 (cited on page ��).

[��] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations. Society for
Industrial and Applied Mathematics, Jan. ���� (cited on page ��).

[��] Randall J. LeVeque. Numerical Methods for Conservation Laws. Basel: Birkhäuser Basel, ���� (cited on
pages ��, ���, ���, ���, ���).

[��] Siddhartha Mishra, Ulrie Fjordholm, and Remi Abgrall. Numerical methods for conservation laws and
related equations (cited on pages ��, ���).

[��] Jan S. Hesthaven. Numerical Methods for Conservation Laws. Philadelphia, PA: Society for Industrial
and Applied Mathematics, Dec. ���� (cited on pages ��, ���, ���).

[��] Francis X Giraldo. An Introduction to Galerkin Methods on Tensor-Product Bases. Vol. ��. ���� (cited on
pages ��, ���, ���).

[��] F.X. Giraldo, J.S. Hesthaven, and T. Warburton. ‘Nodal High-Order Discontinuous Galerkin Methods
for the Spherical Shallow Water Equations’. In: Journal of Computational Physics ���.� (Sept. ����),
pp. ���–���. ���: 10.1006/jcph.2002.7139 (cited on pages ��, ���, ���, ���, ���).

[��] Alfredo Bermudez and Ma Elena Vazquez. ‘Upwind methods for hyperbolic conservation laws
with source terms’. In: Computers & Fluids ��.� (Nov. ����), pp. ����–����. ���: 10.1016/0045-
7930(94)90004-3 (cited on pages ��, ���).

https://doi.org/10.1137/120867032
https://doi.org/10.1016/j.jcp.2015.10.012
https://doi.org/10.1137/15M1046939
https://doi.org/10.1016/0898-1221(95)00144-N
https://doi.org/10.1137/S0036142994269186
https://doi.org/10.1007/s00211-015-0700-2
https://doi.org/10.1016/j.cma.2003.12.059
https://doi.org/10.1190/1.2172306
https://doi.org/10.1006/jcph.2002.7139
https://doi.org/10.1016/0045-7930(94)90004-3
https://doi.org/10.1016/0045-7930(94)90004-3

[��] Emmanuel Audusse et al. ‘A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction
for Shallow Water Flows’. In: SIAM Journal on Scientific Computing ��.� (Jan. ����), pp. ����–����. ���:
10.1137/S1064827503431090 (cited on pages ��, ���, ���, ���).

[��] Sebastian Noelle et al. ‘Well-balanced finite volume schemes of arbitrary order of accuracy for shallow
water flows’. In: Journal of Computational Physics ���.� (Apr. ����), pp. ���–���. ���: 10.1016/j.jcp.
2005.08.019 (cited on page ��).

[��] Geoffrey K. Vallis. Atmospheric and Oceanic Fluid Dynamics. Cambridge: Cambridge University Press,
����, pp. �–��� (cited on page ��).

[��] Michael Baldauf. ‘Discontinuous Galerkin solver for the shallow-water equations in covariant form
on the sphere and the ellipsoid’. In: Journal of Computational Physics ��� (June ����), p. ������. ���:
10.1016/j.jcp.2020.109384 (cited on page ���).

[��] Sergei Godunov and I Bohachevsky. ‘Finite difference method for numerical computation of discon-
tinuous solutions of the equations of fluid dynamics’. In: Matematieskĳ sbornik ��.� (����), pp. ���–���
(cited on page ���).

[��] Philippe G. LeFloch and Mai Duc Thanh. ‘The Riemann problem for the shallow water equations
with discontinuous topography’. In: Communications in Mathematical Sciences �.� (����), pp. ���–���.
���: 10.4310/CMS.2007.v5.n4.a7 (cited on pages ���, ���).

[��] Bernardo Cockburn and Chi Wang Shu. ‘Runge-Kutta Discontinuous Galerkin methods for convection-
dominated problems’. In: Journal of Scientific Computing ��.� (����), pp. ���–���. ���: 10.1023/A:
1012873910884 (cited on page ���).

[���] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics. Vol. ��. Texts in Applied
Mathematics. New York, NY: Springer New York, ����, p. ��� (cited on pages ���, ���, ���).

[���] Ramachandran D. Nair, Stephen J. Thomas, and Richard D. Loft. ‘A Discontinuous Galerkin Global
Shallow Water Model’. In: Monthly Weather Review ���.� (Apr. ����), pp. ���–���. ���: 10.1175/
MWR2903.1 (cited on page ���).

[���] Günther Zängl et al. ‘The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD
and MPI-M: Description of the non-hydrostatic dynamical core’. In: Quarterly Journal of the Royal
Meteorological Society ���.��� (Jan. ����), pp. ���–���. ���: 10.1002/qj.2378 (cited on page ���).

[���] John Thuburn. ‘A PV-Based Shallow-Water Model on a HexagonalIcosahedral Grid’. In: Monthly
Weather Review ���.� (Sept. ����), pp. ����–����. ���: 10.1175/1520-0493(1997)125<2328:APBSWM>
2.0.CO;2 (cited on page ���).

[���] Michal A. Kopera and Francis X. Giraldo. ‘Mass conservation of the unified continuous and dis-
continuous element-based Galerkin methods on dynamically adaptive grids with application to
atmospheric simulations’. In: Journal of Computational Physics ��� (Sept. ����), pp. ��–���. ���:
10.1016/j.jcp.2015.05.010 (cited on pages ���, ���).

[���] Michal A. Kopera and Francis X. Giraldo. ‘Analysis of adaptive mesh refinement for IMEX discontin-
uous Galerkin solutions of the compressible Euler equations with application to atmospheric simula-
tions’. In: Journal of Computational Physics ��� (Oct. ����), pp. ��–���. ���: 10.1016/j.jcp.2014.06.026
(cited on pages ���, ���).

[���] David A. Kopriva, Stephen L. Woodruff, and M. Y. Hussaini. ‘Computation of electromagnetic
scattering with a non-conforming discontinuous spectral element method’. In: International Journal
for Numerical Methods in Engineering ��.� (Jan. ����), pp. ���–���. ���: 10.1002/nme.394 (cited on
page ���).

[���] Cuneyt Sert and Ali Beskok. ‘Spectral element formulations on non-conforming grids: A comparative
study of pointwise matching and integral projection methods’. In: Journal of Computational Physics
���.� (����), pp. ���–���. ���: 10.1016/j.jcp.2005.05.019 (cited on page ���).

[���] S. Marras, M. A. Kopera, and F. X. Giraldo. ‘Simulation of shallowwater jets with a unified elementbased
continuous/discontinuous Galerkin model with grid flexibility on the sphere’. In: Quarterly Journal
of the Royal Meteorological Society ���.��� (July ����), pp. ����–����. ���: 10.1002/qj.2474 (cited on
page ���).

https://doi.org/10.1137/S1064827503431090
https://doi.org/10.1016/j.jcp.2005.08.019
https://doi.org/10.1016/j.jcp.2005.08.019
https://doi.org/10.1016/j.jcp.2020.109384
https://doi.org/10.4310/CMS.2007.v5.n4.a7
https://doi.org/10.1023/A:1012873910884
https://doi.org/10.1023/A:1012873910884
https://doi.org/10.1175/MWR2903.1
https://doi.org/10.1175/MWR2903.1
https://doi.org/10.1002/qj.2378
https://doi.org/10.1175/1520-0493(1997)125%3C2328:APBSWM%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1997)125%3C2328:APBSWM%3E2.0.CO;2
https://doi.org/10.1016/j.jcp.2015.05.010
https://doi.org/10.1016/j.jcp.2014.06.026
https://doi.org/10.1002/nme.394
https://doi.org/10.1016/j.jcp.2005.05.019
https://doi.org/10.1002/qj.2474

[���] J. C. Butcher. Numerical Methods for Ordinary Differential Equations. Chichester, UK: John Wiley & Sons,
Ltd, Mar. ���� (cited on pages ���, ���).

[���] John Strikwerda. Finite Difference Schemes and Partial Differential Equations. Society for Industrial and
Applied Mathematics, Jan. ���� (cited on page ���).

[���] Sigal Gottlieb, David Ketcheson, and Chi-Wang Shu. Strong Stability Preserving Runge-Kutta and
Multistep Time Discretizations. WORLD SCIENTIFIC, Jan. ���� (cited on pages ���, ���, ���).

[���] Chi-Wang Shu and Stanley Osher. ‘Efficient implementation of essentially non-oscillatory shock-
capturing schemes’. In: Journal of Computational Physics ��.� (Aug. ����), pp. ���–���. ���: 10.1016/
0021-9991(88)90177-5 (cited on page ���).

[���] Ethan J. Kubatko, Benjamin A. Yeager, and David I. Ketcheson. ‘Optimal Strong-Stability-Preserving
RungeKutta Time Discretizations for Discontinuous Galerkin Methods’. In: Journal of Scientific
Computing ��.� (Aug. ����), pp. ���–���. ���: 10.1007/s10915-013-9796-7 (cited on page ���).

[���] J. M. Greenberg and A. Y. Leroux. ‘A Well-Balanced Scheme for the Numerical Processing of Source
Terms in Hyperbolic Equations’. In: SIAM Journal on Numerical Analysis ��.� (Feb. ����), pp. �–��. ���:
10.1137/0733001 (cited on page ���).

[���] David A. Kopriva. ‘Metric Identities and the Discontinuous Spectral Element Method on Curvilinear
Meshes’. In: Journal of Scientific Computing ��.� (Mar. ����), pp. ���–���. ���: 10.1007/s10915-005-
9070-8 (cited on page ���).

[���] Yulong Xing, Xiangxiong Zhang, and Chi-Wang Shu. ‘Positivity-preserving high order well-balanced
discontinuous Galerkin methods for the shallow water equations’. In: Advances in Water Resources
��.�� (Dec. ����), pp. ����–����. ���: 10.1016/j.advwatres.2010.08.005 (cited on pages ���, ���,
���, ���, ���, ���).

[���] Yulong Xing and Chi-Wang Shu. ‘High order well-balanced finite volume WENO schemes and
discontinuous Galerkin methods for a class of hyperbolic systems with source terms’. In: Journal of
Computational Physics ���.� (May ����), pp. ���–���. ���: 10.1016/j.jcp.2005.10.005 (cited on
page ���).

[���] Stefan Vater, Nicole Beisiegel, and Jörn Behrens. ‘A limiter-based well-balanced discontinuous
Galerkin method for shallow-water flows with wetting and drying: One-dimensional case’. In:
Advances in Water Resources �� (Nov. ����), pp. �–��. ���: 10.1016/j.advwatres.2015.08.008 (cited
on pages ���, ���).

[���] A. Meister and S. Ortleb. ‘On unconditionally positive implicit time integration for the DG scheme
applied to shallow water flows’. In: International Journal for Numerical Methods in Fluids ��.� (Sept.
����), pp. ��–��. ���: 10.1002/fld.3921 (cited on pages ���, ���, ���).

[���] Georges Kesserwani et al. ‘Well-balancing issues related to the RKDG� scheme for the shallow water
equations’. In: International Journal for Numerical Methods in Fluids (����). ���: 10.1002/fld.2027
(cited on pages ���, ���).

[���] Yulong Xing and Xiangxiong Zhang. ‘Positivity-Preserving Well-Balanced Discontinuous Galerkin
Methods for the Shallow Water Equations on Unstructured Triangular Meshes’. In: Journal of Scientific
Computing ��.� (Oct. ����), pp. ��–��. ���: 10.1007/s10915-013-9695-y (cited on pages ���, ���).

[���] Onno Bokhove. ‘Flooding and Drying in Discontinuous Galerkin Finite-Element Discretizations of
Shallow-Water Equations. Part �: One Dimension’. In: Journal of Scientific Computing ��-��.�-� (June
����), pp. ��–��. ���: 10.1007/s10915-004-4136-6 (cited on page ���).

[���] A. Ern, S. Piperno, and K. Djadel. ‘A well-balanced Runge-Kutta discontinuous Galerkin method for
the shallow-water equations with flooding and drying’. In: International Journal for Numerical Methods
in Fluids ��.� (Sept. ����), pp. �–��. ���: 10.1002/fld.1674 (cited on page ���).

[���] Niklas Wintermeyer et al. ‘An entropy stable discontinuous Galerkin method for the shallow water
equations on curvilinear meshes with wet/dry fronts accelerated by GPUs’. In: Journal of Computational
Physics ��� (����). ���: 10.1016/j.jcp.2018.08.038 (cited on page ���).

https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1007/s10915-013-9796-7
https://doi.org/10.1137/0733001
https://doi.org/10.1007/s10915-005-9070-8
https://doi.org/10.1007/s10915-005-9070-8
https://doi.org/10.1016/j.advwatres.2010.08.005
https://doi.org/10.1016/j.jcp.2005.10.005
https://doi.org/10.1016/j.advwatres.2015.08.008
https://doi.org/10.1002/fld.3921
https://doi.org/10.1002/fld.2027
https://doi.org/10.1007/s10915-013-9695-y
https://doi.org/10.1007/s10915-004-4136-6
https://doi.org/10.1002/fld.1674
https://doi.org/10.1016/j.jcp.2018.08.038

[���] Shintaro Bunya et al. ‘A wetting and drying treatment for the RungeKutta discontinuous Galerkin
solution to the shallow water equations’. In: Computer Methods in Applied Mechanics and Engineering
���.��-�� (Apr. ����), pp. ����–����. ���: 10.1016/j.cma.2009.01.008 (cited on page ���).

[���] Bas van’t Hof and E. A. H. Vollebregt. ‘Modelling of wetting and drying of shallow water using
artificial porosity’. In: International Journal for Numerical Methods in Fluids ��.�� (Aug. ����), pp. ����–
����. ���: 10.1002/fld.959 (cited on page ���).

[���] Tuomas Kärnä et al. ‘A fully implicit wettingdrying method for DG-FEM shallow water models,
with an application to the Scheldt Estuary’. In: Computer Methods in Applied Mechanics and Engineering
���.�-� (Jan. ����), pp. ���–���. ���: 10.1016/j.cma.2010.07.001 (cited on page ���).

[���] Olivier Delestre et al. ‘SWASHES: a compilation of shallow water analytic solutions for hydraulic
and environmental studies’. In: International Journal for Numerical Methods in Fluids ��.� (May ����),
pp. ���–���. ���: 10.1002/fld.3741 (cited on page ���).

[���] William Carlisle Thacker. ‘Some exact solutions to the nonlinear shallow-water wave equations’. In:
Journal of Fluid Mechanics ��� (June ����), p. ���. ���: 10.1017/S0022112081001882 (cited on page ���).

[���] NOAA National Geophysical Data Center. ETOPO� � Arc-Minute Global Relief Model. ����. (Visited on
��/��/����) (cited on page ���).

[���] Y. Okada. ‘Surface deformation due to shear and tensile faults in a half space’. In: Bulletin - Seismological
Society of America ��.� (����), pp. ����–���� (cited on pages ���, ���).

[���] Guangfu Shao et al. ‘Focal mechanism and slip history of the ���� M w �.� off the Pacific coast of
Tohoku Earthquake, constrained with teleseismic body and surface waves’. In: Earth, Planets and Space
��.� (July ����), pp. ���–���. ���: 10.5047/eps.2011.06.028 (cited on pages ���, ���, ���).

[���] National Oceanic and Atmospheric Administration (����). Deep-Ocean Assessment and Reporting of
Tsunamis (DART(R)). National Centers for Environmental Information, NOAA. Sept. ���� (cited on
page ���).

[���] D. Wirasaet et al. ‘Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular,
quadrilateral, and polygonal elements for nonlinear shallow water flow’. In: Computer Methods in
Applied Mechanics and Engineering ��� (Mar. ����), pp. ���–���. ���: 10.1016/j.cma.2013.11.006
(cited on page ���).

[���] Sébastien Blaise et al. ‘Discontinuous Galerkin unsteady discrete adjoint method for real-time
efficient tsunami simulations’. In: Journal of Computational Physics ���.� (����), pp. ���–���. ���:
10.1016/j.jcp.2012.08.022 (cited on page ���).

[���] Denys Dutykh and Frédéric Dias. ‘Water waves generated by a moving bottom’. In: Tsunami and
Nonlinear Waves. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. ��–��. ���: 10.1007/978-3-540-
71256-5_4 (cited on page ���).

[���] Yoshiki Yamazaki, Kwok Fai Cheung, and Zygmunt Kowalik. ‘Depth-integrated, non-hydrostatic
model with grid nesting for tsunami generation, propagation, and run-up’. In: International Journal
for Numerical Methods in Fluids ��.�� (Dec. ����), pp. ����–����. ���: 10.1002/fld.2485 (cited on
page ���).

[���] Kenji Hirata et al. ‘The ���� Indian Ocean tsunami: Tsunami source model from satellite altimetry’.
In: Earth, Planets and Space ��.� (Feb. ����), pp. ���–���. ���: 10.1186/BF03353378 (cited on pages ���,
���).

[���] D. Gopinathan et al. ‘Uncertainties in the ���� SumatraAndaman source through nonlinear stochastic
inversion of tsunami waves’. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences ���.���� (Sept. ����), p. ��������. ���: 10.1098/rspa.2017.0353 (cited on pages ���–���).

[���] B. Poisson, C. Oliveros, and R. Pedreros. ‘Is there a best source model of the Sumatra ���� earthquake
for simulating the consecutive tsunami?’ In: Geophysical Journal International ���.� (June ����), pp. ����–
����. ���: 10.1111/j.1365-246X.2011.05009.x (cited on pages ���, ���).

[���] Remko Scharroo et al. ‘RADS: Consistent multi-mission products’. In: �� Years of Progress in Radar
Altimatry. Vol. ���. ���� (cited on page ���).

https://doi.org/10.1016/j.cma.2009.01.008
https://doi.org/10.1002/fld.959
https://doi.org/10.1016/j.cma.2010.07.001
https://doi.org/10.1002/fld.3741
https://doi.org/10.1017/S0022112081001882
https://doi.org/10.5047/eps.2011.06.028
https://doi.org/10.1016/j.cma.2013.11.006
https://doi.org/10.1016/j.jcp.2012.08.022
https://doi.org/10.1007/978-3-540-71256-5_4
https://doi.org/10.1007/978-3-540-71256-5_4
https://doi.org/10.1002/fld.2485
https://doi.org/10.1186/BF03353378
https://doi.org/10.1098/rspa.2017.0353
https://doi.org/10.1111/j.1365-246X.2011.05009.x

[���] Yushiro Fujii and Kenji Satake. ‘Tsunami Source of the ���� Sumatra-Andaman Earthquake Inferred
from Tide Gauge and Satellite Data’. In: Bulletin of the Seismological Society of America ��.�A (Jan. ����),
S���–S���. ���: 10.1785/0120050613 (cited on page ���).

https://doi.org/10.1785/0120050613

�*-$. �ӏӎӅӖ
�#ѵ�ѵ ./0�)/ $) �++'$ � ��/# (�/$�.
H �# ($) � '� �)ţ" с рпсч �-ĝ1 -)" .Ѷ �2$/5 -'�)�
ǝ сшѵ ��)0�- ршчш , � -(�)ҝ�0'"�-$�)
ú урҗпҘцчцпцттуп۔ � �*) 1�.ѵ"$/#0�ѵ$*
ǚ �*) 1�.ҽ"(�$'ѵ�*(� "$/#0�ѵ�*(ҝ�*) 1�.
Ò '$)& �$)ѵ�*(ҝ$)ҝ�*) 1�. ƃ .�#*'�-ѵ"**"' ѵ�*(

�ӄӕӃӁӔӉӏӎ
�3+ �/ � спср �#ѵ�ѵ $) �++'$ � ��/# (�/$�.Ѷ ���Ѷ �2$/5 -'�)�
� �-0�-4 спрц �0+ -1$. � �4 �-*!ѵ ��) �ѵ 	 ./#�1)

ô � . �-�# �)� � 1 '*+()/ *!)0(-$��' (/#*�. �)� �*(+0/�/$*)�' '$) �- �'" �-� �'"*-$/#(. !*-
.*'1$)" '$) �- .4./ (. Ȃ$�$)/'4

ô � . �-�# *) !$)$/ ' ()/ (/#*�. !*- .*'1$)" ���. 2$/# �++'$��/$*). /* " *+#4.$��' !'*2.
ô
)� +)�)/ - . �-�#Ѷ �*)� +/0�'$5�/$*) �)� � 1 '*+()/ *!)*1 ' (/#*�. �)� �'"*-$/#(.
ô �0+ -1$. � /# .$. +-*% �/. - '�/ � /*)0(-$��' (/#*�. �)�(��#$) ' �-)$)"
ô �0/#*- � + -Ҋ- 1$ 2 � �-/$�' . $) /*+Ҋ/$ - %*0-)�'.
ô �-$)�$+�' / ��#$)" �..$./�)/ !*- �)�'4.$.
Ѷ

Ѷ

 �)� !*- �/�/$./$�. о �-*���$'$/4 !*- �)"$) -.

��)0�-4 спрц � . �-�# - $) ���#$) �-)$)"Ѷ �� �ӕӎӉӃӈѶ � -(�)4
��)0�-4 спрх ô � . �-�# �)� � .$") *!)*1 ' (��#$) ' �-)$)" (/#*�. !*- +#4.$�.Ҋ��. � .$(0'�/$*).

ô � .$") �)*1 ' ���#$) �-)$)" �'"*-$/#(. !*- Ȃ$�$)/ .$(0'�/$*). *! !'0$�.
ô �0/#*- � + -Ҋ- 1$ 2 � �-/$�' $) � /*+Ҋ/$ - %*0-)�'
ô �3+ -$)� $) 2*-&$)" 2$/# +*+0'�- � !-�(2*-&.

� � (� - спрф �ѵ��ѵ $) � -*.+�� �)"$) -$)"Ѷ �ӎӉӖӅӒӓӉӔә ӏӆ �ӔӕӔӔӇӁӒӔѶ � -(�)4
��4 спрт ô �*�0. *))0(-$��' (/#*�. �)�(�/# (�/$��' (*� ''$)"

ô �# .$. 2*-& *) /# �$.�*)/$)0*0. ��' -&$) (/#*� !*- /# .#�''*2 2�/ - ,0�/$*).

� �-0�-4 спрф �ѵ��ѵ $) �#4.$�.Ѷ �ӎӉӖӅӒӓӉӔә ӏӆ �ӔӕӔӔӇӁӒӔѶ � -(�)4
��/*� - спрр ô �/0�4 *! �#4.$�. $) +�-�'' ' /* (4 � "- $) � -*.+�� �)"$) -$)"

ô �*�0. *) �# *- /$��' �#4.$�. �)� $) +�-/$�0'�- �/�/$./$��' �#4.$�.
ô �# .$. 2*-& *)��-&*1 �#�$)(*� '. �)� *+/$($5�/$*) *! �*'' �/$1 /-�).+*-/ 0.$)"(*' �0'�-(*/*-.

�+-$' спрт �ѵ��ѵ $) � -*.+�� �)"$) -$)"Ѷ �ӎӉӖӅӒӓӉӔә ӏӆ �ӔӕӔӔӇӁӒӔѶ � -(�)4
��/*� - сппш ô ���# '*- /# .$. *) # �/ /-�).! - $) +*-*0. (�$�

�ӋӉӌӌӓ
�-*"-�(($)" ��/'��Ѷ �0'$�Ѷ �4/#*)Ѷ �*-/-�)Ѷ �Ѷ Ѷ۔۔� ��/# (�/$��

$�-�-$. �0(+4Ѷ �4�*-�#Ѷ �).*-!'*2Ѷ ��)��.
�/# - /**'. "$/Ѷ(�& Ѷ "(�& Ѷ ��.#Ѷ ��*� Ѷ ��-�1$ 2Ѷ �)$3Ѷ ����

ӎӔӅӒӅӓӔӓ
ô �'"*-$/#(� .$")
ô ��$)/$!$� �*(+0/$)"
ô �0(-$��' $) �- �'" �-�
ô ���#$) �-)$)"

�ӗӁӒӄӓ
��#*'�-.#$+ *! /# � -(�) ���Ҋ
� ($� ��#*'�-.#$+ �*0)��/$*)
сппшҊспрх

ӁӎӇӁӕӇӅӓ
�)"'$.# ÿ ÿ ÿ ÿ ÿ

� -(�) ÿ ÿ ÿ ÿ ÿ

�-)�# ÿ ÿ ÿ ÿ ƽ

�+�)$.# ÿ ÿ ÿ ƽ ƽ

��+�) . ÿ ÿ ÿ ÿ ƽ

�0'"�-$�) ÿ ÿ ÿ ÿ ÿ

ӎӔӅӒӎӓӈӉӐӓ о �ӏӌӕӎӔӅӅӒ �ӏӒӋ
спру �/0�)/ � ��#$)" �..$./�)/ $) /# �#4.$�. � +�-/()/ѵ
спрс � . �-�#
)/ -) �/ /# � -(�) � -*.+�� �)/ - җ��Ҙ $) �/0//"�-/Ѷ � -(�)4ѵ

спрпҊспрс �*'0)/ - �/ /# � -*.+�� �� $) 	 --)� -"Ѷ � -(�)4ѵ 	 '+$)" #$"#Ҋ.�#**' ./0�)/. �0$'� � ($�-*Ҋ
.�/ ''$/ ѵ

сппш
)/ -) �/ � -� � .Ҋ�)5 $) �)/ -/ƕ-&# $(Ѷ � -(�)4
сппч �$'$/�-4 . -1$� $) /# � -(�) �$- �*-�

�0'4 срѶ спср �ӏӒӉӓ �ӏӎӅӖ Ҋ �� р

�ӅӌӅӃӔӅӄ �ӒӏӊӅӃӔӓ
	ӓӓ�ӁӔӒӉӃӅӓѵӊӌ ؉؋؉؋ Ҋ ؊؋؉؋
� "$/#0�ѵ�*(ҝ�*) 1�.ҝ	..��/-$� .ѵ%' �* � +- .)/ � �/ �0'$��*) спср
� �0'$� +��&�" !*- 2*-&$)" 2$/# #$ -�-�#$��''4 . ($Ҋ. +�-��' (�/-$� .ѵ �-*1$� . Ȃ$�$)/ $(+' ()/�/$*). *! �'"*-$/#(.
�)� �-$/#(/$� �. 2 '' �. /**'. !*- 1$.0�'$5�/$*)ѵ
�0'$�

	ӉӅӒӁӒӃӈӉӃӁӌ�ӏӌӖӅӒӓѵӊӌ ؊؋؉؋
� "$/#0�ѵ�*(ҝ�*) 1�.ҝ	$ -�-�#$��'�*'1 -.ѵ%'
� �0'$� $(+' ()/�/$*) *! Ȃ$�$)/ ./-0�/0- � �$- �/ .*'1 -. !*- .+�-. (�/-$� .ѵ �Ȃ -. ,0�.$'$) �- �*(+' 3$/4 ��0..$�)
 '$($)�/$*) !*- .+�-. ���(�/-$� .ѵ ��) � 0. � �. �) �++-*3$(�/ �$- �/ .*'1 - *- �. � +- �*)�$/$*) -ѵ
�0'$�

�ӘӔӅӎӓӉӏӎӓ Ӕӏ ӎӏӄӁӌҊӄӇ ؑ؊؉؋
� "$/#0�ѵ�*(ҝ�*) 1�.ҝ)*��'Ҋ�"Ҋ 3/).$*)
�3/).$*). /* /#)*��'Ҋ�" '$�-�-4Ѷ $(+' ()/$)" �*)/$)0*0. ��' -&$) �)� �$.�*)/$)0*0. ��' -&$) (/#*�. !*- � -�)" *!
(/#*�.ѵ �*(+' / 2$/# .*((/#*�. !*- ") -�/$)" �) ./ � �$.. �/$*) �. 2 '' �. /**'. !*- 1$.0�'$5�/$*)ѵ
��/'��

�ӕӓӔӏӍ �ӅӎӓӏӒ�ӌӏӗ ӅӘӔӅӎӓӉӏӎӓ ؏؊؉؋
�*/ +0�'$�'4 �1�$'��'
�0./*(�).*-�'*2 (*�0' . $(+' ()/$)" � �*)1*'0/$*). $) с� �)� у�Ѷ �*(+' / 2$/# "-��$)/ $)!*-(�/$*) /* !��$'$/�/
���&+-*+�"�/$*)ѵ
۔۔� �4/#*) �$")

�ӅӆӅӒӅӅӄ �ӕӂӌӉӃӁӔӉӏӎӓ о �ӁӌӋӓ
�*) 1Ѷ �ѵѶ 	 ./#�1)Ѷ �ѵ�ѵѶ � 	ӉӅӒӁӒӃӈӉӃӁӌ �ӒӅӃӏӎӄӉӔӉӏӎӅӒ ӆӏӒ �ӁӖӅ �ӒӏӂӌӅӍӓ Ӊӎ �ӕӁӓӉӌӉӎӅӁӒ �ӏӍӐӌӅӘӉӔәѵ �)� -
� 1$ 2Ѷ спспѵ
æ �- +-$)/

�-�)/'Ѷ ѵѶ �*) 1Ѷ �ѵѶ �#0 - 4Ѷ �ѵѶ �ӅӎӅӒӁӔӉӎӇ ӉӑӕӉӄ �ӉӍӕӌӁӔӉӏӎӓ ӗӉӔӈ �ӅӆӏӒӍӁӔӉӏӎҊӁӗӁӒӅ �ӅӕӒӁӌ �ӅӔӗӏӒӋӓѵ
��
�*)! -)� �-*� �$)".Ѷ спршѵ
� *+)- 1$ 2ѵ) / � �$� *

	�%$#�..�)+*0-Ѷ �ѵѶ �*) 1Ѷ �ѵѶ 	 ./#�1)Ѷ �ѵ�ѵѶ � ӃӏӍӐӁӒӁӔӉӖӅ ӓӔӕӄә ӏӆ ӅӁӒӔӈӑӕӁӋӅ ӓӏӕӒӃӅ ӍӏӄӅӌӓ Ӊӎ ӈӉӇӈҊӏӒӄӅӒ
ӁӃӃӕӒӁӔӅ ӔӓӕӎӁӍӉ ӓӉӍӕӌӁӔӉӏӎӓѵ �� �) �*� ''$)"Ѷ рурѶ рпрусш спршѵ
� �*$ѵ*-"ҝрпѵрпрхҝ%ѵ*� (*�ѵспршѵрпрусш

�*) 1Ѷ �ѵѶ 	 ./#�1)Ѷ �ѵ�ѵѶ �$-�'�*Ѷ �ѵ�ѵѶ �*+ -�Ѷ �ѵ�ѵѶ �ӉӓӃӏӎӔӉӎӕӏӕӓ �ӁӌӅӒӋӉӎ ӓӃӈӅӍӅ ӆӏӒ ӔӈӅ ӓӐӈӅӒӉӃӁӌ ӓӈӁӌӌӏӗӗӁӔӅӒ
ӅӑӕӁӔӉӏӎӓ ӗӉӔӈ ӁӐӐӌӉӃӁӔӉӏӎӓ Ӕӏ ӔӓӕӎӁӍӉ ӍӏӄӅӌӉӎӇ Ӂӎӄ ӐӒӅӄӉӃӔӉӏӎѵ �*0-)�' *! �*(+0/�/$*)�' �#4.$�.Ѷ тхсѶ ++ѵ усфҊууч
спрчѵ
� �*$ѵ*-"ҝрпѵрпрхҝ%ѵ%�+ѵспрчѵпсѵппч æ �- +-$)/ � �$� * р � �$� * с

�*) 1Ѷ �ѵѶ 	ӓӓ�ӁӔӒӉӃӅӓѵӊӌ Ҋ � �ӕӌӉӁ ӐӁӃӋӁӇӅ ӆӏӒ ӈӉӅӒӁӒӃӈӕӃӁӌӌә ӓӅӍӉҊӓӅӐӁӒӁӂӌӅ ӍӁӔӒӉӃӅӓѵ /�'& �/ �0'$��*)Ѷ спсрѵ
�+�*($)"

�*) 1Ѷ �ѵѶ �ӏӄӅӌӉӎӇ ӔӓӕӎӁӍӉӓ ӕӓӉӎӇ ӔӈӅ ӄӉӓӃӏӎӔӉӎӕӏӕӓ �ӁӌӅӒӋӉӎ ӍӅӔӈӏӄ ӆӏӒ ӔӈӅ ӓӐӈӅӒӉӃӁӌ ӓӈӁӌӌӏӗ ӗӁӔӅӒ ӅӑӕӁҊ
ӔӉӏӎӓѵ Ǔ)� ������ 2*-&.#*+Ѷ спрчѵ

�*) 1Ѷ �ѵѶ ӁӒӇӅҊ�ӃӁӌӅ �ӓӕӎӁӍӉ �ӉӍӕӌӁӔӉӏӎӓ ӕӓӉӎӇ ӔӈӅ �ӉӓӃӏӎӔӉӎӕӏӕӓ �ӁӌӅӒӋӉӎ �ӅӔӈӏӄѵ /�'& �/ /# Ǔǘ/# �$))$�'
�*)! -)� *) �0(-$��' �)�'4.$.Ѷ спрцѵ

�0'4 срѶ спср �ӏӒӉӓ �ӏӎӅӖ Ҋ �� с

	Efficient algorithms for wave problems
	Preface
	Contents
	Hierarchical preconditioners
	Motivation
	Some related problems
	Finite element approximation
	Green's function

	Low-rank approximation
	Linear algebra basics
	Sparse matrices
	Low-rank matrices
	Rank-revealing QR
	Random sampling

	Sparse direct solvers
	Graph elimination
	LDR Factorization
	Fill-in and reorderings
	Structured elimination

	Iterative solvers
	Krylov spaces
	The Arnoldi iteration
	GMRES
	Convergence of GMRES
	Preconditioning

	Hierarchical matrices
	Approximate separability
	Block cluster trees
	Hierarchical matrices
	Nested bases

	Algorithms for hierarchical matrices
	HODLR arithmetic
	HSS arithmetic
	HSS compression
	HssMatrices.jl

	Hierarchical approximate solvers
	Compressing the fill-in
	Existing methods
	Approximate factorization
	Complexity of the algorithm

	Numerical Experiments
	Parameters
	Poisson problem
	Helmholtz problem
	Scaling and performance
	Codes for reproducibility
	Concluding remarks

	Discontinuous Galerkin methods for the Shallow Water Equations
	Motivation
	The shallow water equations
	A simple scheme

	The discontinuous Galerkin method
	In one dimension
	On the Sphere
	A few words on meshes
	Time integration

	Well-balanced schemes
	The well-balanced property
	Hydrostatic reconstruction
	Well-balanced DG schemes
	Non-conforming meshes

	Wet/dry transitions
	A survey of existing methods
	Maintaining positivity
	Flux discretization
	A few notes on stability

	Numerical Results
	Results in one dimension
	Results on the sphere
	Dynamic source models
	Concluding remarks

	Bibliography

